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ABSTRACT Forecasting crowd congestion is crucial for ensuring comfortable mobility and public safety.
Existing methods forecast crowding by capturing the increase in planned visits, which facilitates the methods
in estimating the start of crowding. However, forecasting the change in the degree of crowding until the
end is challenging owing to the lack of visitors’ return plans and the deviation of visitor movements from
preannounced event schedules. To address this issue, this study developed a novel framework for forecasting
the start of crowding and its change over time (termed the lifespan of crowded events (LCE)). Based
on the concept that event purposes influence the crowding patterns, our framework models these patterns
according to the event purposes. Inspired by the acoustic synthesis that can successfully model the change
in the sound volume for each instrument, we extended a canonical long short-term memory (LSTM) model
with the concept of ADSR envelope, wherein the sound (crowd) volume changes can be represented within
simple state transitions. The proposed versatile acoustic tri-state envelope for segmental LSTM, namely
VATES, is evaluated on two datasets: synthetic and real-world mobility datasets. The results demonstrate
that VATES can forecast crowding patterns with a 24.3% performance improvement, and precisely predict
the start and end times of crowding, thereby improving by 6.6% and 26.1% respectively. We believe that our

method enhances urban safety and mobility in crowded events, contributing to smarter city management.

INDEX TERMS Crowd Forecasting, Urban Computing, ADSR Envelope, Acoustic Synthesis,

Time Series Forecasting.

I. INTRODUCTION

Public events such as sports games, exhibitions, and festivals
often result in large crowds with the potential for mobility
disruptions and terrible accidents. For example, the Hal-
loween event in Itaewon in 2022 resulted in a crowd crush
that led to 159 deaths and 196 injuries'. Understanding the
conditions for such crowded events is crucial for mitigating
the risk of public threats. In particular, forecasting the lifes-
pan of crowded events (LCE), which describes the start
of crowding and the change in the degree of crowding at a
certain venue over time, is of great importance for several
different parties: (1) such forecasting is important for event
organizers and public security officials, as it enables them
to allocate guards at forecasted peak congestion times, and
(2) event attendees can know the forecasted end of crowding

1 https://en.wikipedia.org/wiki/Seoul_Halloween_crowd_crush
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and determine the optimal time to comfortably leave the event
venue.

With the extensive use of smartphones with Global Posi-
tioning System (GPS) sensors, numerous methods and appli-
cations have been developed for forecasting crowded events.
These methods include simulating spatiotemporal human mo-
bility patterns [1]-[8] and predicting the duration of crowded
events [9], [10]. However, all such methods rely on the signs
of congestion that appear in current mobility patterns. There-
fore, the prediction time is limited to several hours ahead,
which is insufficient for an initial response to crowding.
Further, forecasting crowding one week ahead of the event has
also been attempted. Previous research has proposed visitor
schedule-driven methods that forecast the number of event
visitors using their visit plans, such as transit search logs [11],
[12].


https://en.wikipedia.org/wiki/Seoul_Halloween_crowd_crush
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FIGURE 1. Transition of crowd density under various events, with the
historical average (denoted as "on a daily basis") and the event hours.

Howeyver, to date, there are no methods that can forecast the
LCE for two reasons. First, although visitors often plan their
visits to arrive on time for an event, they seldom plan their
return trips in advance. Therefore, existing methods based on
the transit search logs [11], [12] can only forecast the start
of crowding and not the duration and end of the crowded
events. Second, event visitors do not always stay at and leave
from the event venues as the event schedules announced in
advance. For example, the crowd density at the Rugby World
Cup started decreasing after the game finished (as shown in
Fig. 1(a)), whereas that at the Tokyo Motor Show decreased
during the event and immediately returned to normal after the
event finished (as shown in Fig. 1(b)). Thus, forecasting the
LCE is a challenging problem even when the user visit plans
or event schedules are considered.

To address this issue, this study focused on the types of
events, that is, event purposes, as a leading indicator of the
LCE. Event visitors tend to stay at the stadiums during the
sports games (Fig. 1(a)), whereas they tend to leave from
the exhibition event site after finishing watching the displays
they are interested in (Fig. 1(b)). Thus, the movement of
people around the venue is determined by the event purposes.
Consequently, events sharing the same purpose exhibit sim-
ilar crowd density waveforms, whereas those with different
purposes exhibit varied patterns.

Thus, our key assumption was that the waveform pattern
of crowd density can be categorized by event purposes, and
predicting event-purposes-based waveform patterns, such as
population increase, preservation, and decrease, can facilitate
more accurate LCE forecasting than predicting the crowd
density for each time using a conventional time series model-
ing. The idea was inspired by the field of acoustic synthesis,
where for each instrument, the shape of the volume wave-
form, namely ADSR envelope (as shown by the blue line in
Fig. 2(a)), is first determined, and then a sound for a single
note (as shown in the red fill in Fig. 2(a)) is synthesized.
Thus, the acoustic synthesis can be viewed as generating time
series of sound volume based on an approximate waveform
pattern for a complete sound to provide the sound the in-
trinsic characteristics of instruments. Based on this concept,
our hypothesis was that the LCE prediction can be rendered
more accurate by learning event-purpose-based waveforms
and encouraging the predicted time series of crowd density
to follow the learned waveforms.

2

Inspired by the acoustic synthesis, this study proposed a
Versatile Acoustic Tri-state Envelope for Segmental LSTM,
or VATES, to forecast the start of crowding and estimate
the change in the crowd density during crowded events. We
considered the event purposes as instruments, the waveform
pattern of crowd density as an ADSR envelope (Fig. 2(b)),
and the time series of crowd densities as a sound from on-
set to offset, as shown in Fig. 2(c). Based on this analogy,
the VATES extended a canonical long short-term memory
(LSTM) [14]-based model by leveraging the ADSR envelope
concept to accurately capture waveforms tailored to spe-
cific event purposes. Specifically, we introduced an ADSR-
envelope-inspired state segmentation strategy that extracted
the state transitions and parameters of ADSR envelopes from
crowd density waveforms based on event purposes. Further-
more, we introduced two auxiliary learning tasks inspired
by synthesizers, in addition to the primary task of learning
crowd density: (1) envelope depiction, to learn parameters
defining the ADSR shape, and (2) state sequence labeling,
to learn the ADSR state transitions. These auxiliary tasks
involved learning the key semantics of LCE, such as the
increase or decrease of crowd density, start and end times of
crowding, and duration. Thus, the auxiliary tasks contribute
to the improvement of LCE predictions.

The contributions of this work are as follows:

« We forecasted the LCE, that is, the start of crowding and
the change in the degree of crowding over time. To the
best of our knowledge, this study is the first to tackle the
LCE forecast problem.

o We introduced a versatile acoustic tri-state envelope for
the segmental LSTM (VATES) model, which was in-
spired by the successful concept of acoustic synthesis,
that is, the ADSR envelope.

o The experimental results demonstrated that VATES per-
formed better than the state-of-the-art approaches in
forecasting the start of crowding and estimating time
series changes in crowd densities.

The remainder of this paper is organized as follows. Section

IT presents a review of the related works. Section Section
IIT presents the problem definitions and baseline approaches.
Section IV describes the proposed method. Section V shows
the experimental details of the performance evaluation and
Section VI discusses the limitations and implications of this
study. Finally, Section VII concludes the paper.

Il. RELATED WORK

First, we reveal the difference between the existing crowd
density/flow prediction and that of our study. Thereafter, we
review prior studies on urban event prediction and time-
series forecasting, which are related to our research. Finally,
we briefly introduce literature on acoustic synthesis.

With the widespread use of global positioning system
(GPS)-equipped devices, crowd density and flow prediction
have been studied intensively in recent years [15], [16]. Typi-
cal studies involve simulation-based methods that assume that
the spatiotemporal autocorrelation in the densities/flows of
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people, that is, the crowd flows at a certain region and time
step are correlated with the flows at the neighbor regions and
next time step [1], [16], [17]. Thus, existing approaches em-
ploy current crowd flows as covariates to predict crowd flows
several hours in advance [1]-[8], as shown in Fig. 3. Although
these methods have exhibited promising forecasting perfor-
mance, the autocorrelation assumption is easily violated when
the time steps between the input and output are large. For
example, signs of crowded events one week from the event
do not appear in the current flow patterns. Moreover, existing
methods exhibit reduced prediction performance when the
time steps between the input and output are increased [4], [8].

In contrast, side-information-based methods have been
proposed, wherein the crowd density/flows are predicted
based on related information such as time, weather, cal-
endar information, and visitor schedules [11], [12], [18]-
[21]. Because distant future crowd patterns are predictable
using related side information, this study adopted a side-
information-based strategy. Typical studies have employed
time, weather, and calendar information [18]—[20], where the
model is specialized for predicting daily crowd densities, such
as patterns in commute time. Alternatively, several studies
leveraged visitor schedules that reflected when they arrived at
an event venue [11], [12], [21]. However, these methods can
only forecast the start of crowding as discussed in Section I.
Thus, none of the existing methods can forecast the LCE one
week before an event.
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Urban event prediction involves the prediction of future
events, such as crowd gatherings and traffic accidents in
cities. Despite the difficulty in predicting such events be-
cause of their rarity, the prediction of urban events has been
studied for many years [22]. Previous studies mainly focused
on predicting when an event occurs by directly regressing
time-to-event [23] or by fitting event time distributions with
point processes [24]-[27]. However, these only predicted the
occurrence of urban events, and not their duration. In contrast,
several studies addressed the prediction of the duration of
urban events, for example, traffic incidents [28]. Vahedian et
al. [9], [10] focused on the duration of crowded events; that
is, they defined the ends of crowded events as urban dispersal
events and applied survival analysis to predict the length of
time to the end of crowding. However, this analysis employed
crowd inflows to event venues as indicators of crowding.
Thus, the predictable time of this analysis was limited to the
near future, that is, 5 hours ahead, in the original problem
setting. In Section V, we compared our model with survival
analysis-based approaches.

Time series forecasting (TSF). Herein, the typical goal
is to forecast the data in the next time step based on the
data in the current time step and has been extensively
researched [29]. The TSF technique has been applied in
many fields, such as climate modeling [30], biological sci-
ences [31], and finance [32]. With the emergence of deep
learning technology in recent years, recurrent neural net-
works (RNN), such as LSTM [14] and Gated Recurrent Unit
(GRU) [33], are frequently used to model time-series data.
Furthermore, convolutional neural networks (CNN) [34],
which were originally introduced in the computer vision field,
have gained attention as a TSF technique [35], [36], par-
ticularly for modeling spatiotemporal abnormal events [37].
Although promising methodologies have been proposed in
the TSF literature, the underlying assumption in the existing
TSF framework involves the capture of the temporal auto-
correlation between the input and output data, which is akin
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to the simulation-based methods for crowd flow prediction.
Thus, crowding one week in advance cannot be forecasted, as
shown in Fig. 3. Although we adopted LSTM to capture the
time series of the LCE, we combined the side-information-
based strategy with the LSTM-based model to realize one-
week-ahead forecasting.

Acoustic synthesis is a fundamental technology in modern
popular music [38]-[40]. IN general, synthesizers use an
envelope that governs the time-variant volume change of a
note from onset to offset to imitate the instruments. One of
the most prevalent envelopes, ADSR (as shown in Fig. 2(b)),
comprises four states that define the volume changes: attack
(a rising phase of sounds), decay (first attenuation phase of
sounds), sustain (preserving phase of sounds), and release
(final attenuation phase of sounds) [41]. To the best of our
knowledge, this is the first study to use the ADSR approach
for predicting urban events. Specifically, we applied the
ADSR approach to synthesize the forecasted crowd density
transition.

Ill. PRELIMINARIES

A. PROBLEM SETTING

Let [ be an event venue and d represent an index of dates. We
divided a day into T time segments denoted by ¢ (i.e., t :=
1,...,T). Further, 7 := dT + t denotes the time steps indexed
in the sequential order of the time series within a dataset. The
crowd density observed at venue [/ at time step 7 is denoted
by yi,r.

We modeled y; - by leveraging the side information such
as the time segments of the day, contextual information (i.e.,
day of the week and holidays), pre-scheduled visitor counts
for venue [, event hours, and event purpose (e.g., sports and
exhibitions). Let ¢ € R” be a time feature of time segment
t,and ¢; € RC be a context feature encoding the day of
the week or holiday. To estimate the visitor count of events
accurately, we incorporated the number of scheduled visits by
attendees. For this purpose, we used transit search logs based
on previous studies [11], [12], [21]. The transit search log
is a tuple (d,t,d’, 1) of scheduled date d, time ¢, search date
d’, and destination /. The number of scheduled visits for / on
date d as of d’ is accounted for by the number of logs that
schedule visits to destination / on date d and are searched on
date d’, denoted by x; 4. Subsequently, a scheduled visit
feature is defined as x; 4 = {x.4jja—i|i = pa, ..., Pa +Pw:j =
1,...,T} € RT where p,; denotes the earliest day preceding
the scheduled date d and p,, represents the span of the days
under consideration. To capture the duration of crowding,
we leveraged event-hour data. We formulated a time-of-event
feature e; 4 < RE that represented the start and end times of
an event on day d. We further considered the event purpose,
such as sports games and exhibitions, denoted by u; , € RY.
A comprehensive formulation of these features is presented
in Section V-B1.

We forecasted the LCE at [ by learning and forecasting
the time series of y; , one week before an event. Specifi-
cally, considering the side information such as scheduled visit

4

feature x; 4, contextual feature ¢,, time feature £, time-of-
event feature e; 4, and event purpose u; 4, we established a
predictive model of y; , for each venue /, as of d — 7.

B. BASELINE: CANONICAL LSTM WITH EVENT PURPOSES

The forecasting of the y; - can be regarded as the TSF prob-
lem. However, as discussed in Section II, the existing TSF
model assumes the temporal autocorrelation, which limits the
predictable time to several hours, as shown in [4], [8]. There-
fore, we incorporated the side information (such as event
purposes) based strategy with the canonical Long Short-Term
Memory (LSTM) framework [14] as the baseline model.

As we can assume that the number of GPS logs within
a certain region and time interval follows a Poisson distri-
bution [18]; Thus, the likelihood of y; - can be expressed
as P(yi,r) = Pois(yi-|Ni-) = M2 exp(—=Ai7) /-l
where )\; - > 0 denotes the mean parameter of the Poisson
distribution.

Further, )\; » was regressed using the input features intro-
duced in Section III-A. Specifically, we generated an embed-
ding vector h§0> from the features as inputs to the canonical
LSTM model. To handle the coupling effect between time and
other factors, we adopted a bilinear representation as follows:

00(10) = Concat(cd,xz,d,el)d7u17d) S RC+[)“,T+E+U, (1)
hC) == ReLU(Y " W"r), i=1,.. . H, )
B = (hy, . by € RY, 3)

where Concat(-) is a column-oriented concatenation opera-
tion of vectors and ngo) € RCEHATHERU)XT jq 3 matrix of
parameters. The LSTM-based model parameterizes the time
series of \; , as follows:

e, by = LSTM(hY; ©Ls1m), )
A ey =w'hryy, j=0,..,p, (5)

where OgTv and w; € R are the learning parameters, and
h.; € R¥ denotes the hidden feature as interpreted by the
LSTM model. The loss function is the negative log-likelihood
(NLL) of the Poisson distribution, defined as L0 (OrsT™m) =
-2 Z;:o In Pois(yr,r4j|Ar,r+7)-

This model takes into account the event purposes that are
essential for distinguishing waveform differences associated
with various events. However, merely considering these pur-
poses are not sufficient to accurately model the waveforms
because these purposes do not include detailed waveform
semantics such as peak crowd density and crowding dura-
tion.Therefore, in the next section, we will introduce a novel
approach to waveform modeling that utilizes the successful
techniques of acoustic synthesis.

IV. PROPOSED METHOD: VATES
A. BASIC IDEA OF VATES:

VOLUME 11, 2023



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

IEEE Access

State Segmentation (Sec. IV-B) ’

I Envelope Depiction (Sec. IV-C) I

4 Envelope variables

Scheduled visit

GPS Logs A
- /A Ax? L
[—] Crowd Density
7 -
-~ - 7 Zl,d
o - (0)
Context 0d
coney
Crowd Density Crowd Density ﬁ 59-' -
Imtme YLt i Cld D RMLP
| LLR Test (Sec. V-B1) | Time-of-event
h©

rowd Density meding
Detection
tims

[ Tri-State Segmentation ]
(Sec. V-B2)

rogd_Density

? - ™
Bilinear
Time

PR ¥

Cl,d,k —

Poisson
NLL

[
LSTM LSTM . LSTM

hT hr+1 ‘hrﬂq
T

BN '
tl,d,l Atl,d,k

State Sequence Learning
(Sec. 1V-D)

State transition *%

i 8 8 Birip | : ‘
E l\s l(gl o) Sl,r Sl,r+1 Slr+p
e Crowd
’ ’ 1% Density, Yir+p
h7 hr+1 T+p
Linear Linear Poisson I
v \d A

>\l,7' )\l,7'+1 )\l,r+pé

tl Input features

I State-Aware Crowd Density Synthesis (Sec. IV-E) I
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INSPIRATION FROM ACOUSTIC SYNTHESIS

The basic idea of the versatile acoustic tri-state envelope for
segmental LSTM (VATES) is to first predict the shape of
the crowd density transition by the event purpose, instead of
directly regressing the crowd density for each time step. The
shape reflects the inherent characteristics of crowded events,
that is, the timing of the start and end of congestion, and the
presence of periods in which the number of visitors increase
or decrease. This approach is analogous to acoustic synthesis,
in which the envelope shape is first determined such that it
matches the desired instrument.

Thus, we incorporated the concept of ADSR envelope into
the baseline canonical LSTM model introduced in Section
III-B. From the ADSR envelope, we adopt the following three
states: attack (increase in crowd density), sustain (preserva-
tion of density), and release (decrease in density). We also
introduced a noncrowded state to represent a state other than
acrowded event. As illustrated in Fig. 4, the proposed VATES
extends the baseline canonical LSTM model with the follow-
ing components:

1) State Segmentation — This component categorizes the
events by event purposes and segments y; - in the follow-
ing four states: attack, sustain, release, and non-crowded
(discussed in Section IV-B).

2) Envelope Depiction — This component is to learn and
predict the shape of crowd densities that are used to
synthesize the prediction of crowd density J; , (discussed
in Section IV-C).

3) State Sequence Labeling — This component learns and
predicts the states of each time step (7 ~ 7 + p) based on
the predicted envelopes, thereby assisting in forecasting
crowd densities associated with state transitions (Section
IV-D).

VOLUME 11, 2023

4) State-Aware Crowd Density Synthesis — Drawing on
the predicted envelope and state sequences, this compo-
nent synthesizes the prediction of crowd density (Section
IV-E).

B. STATE SEGMENTATION
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FIGURE 5. (a) Crowding detection result and (b) Tri-state segmentation
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denotes "daily". (c) Transition of the number of transit search logs

X; d.t|d—7. where I is Tokyo Big Sight where the Tokyo Motor Show was
held, and d is Oct. 25, 2019. (d) Tri-state segmentation result for Tokyo
Motor Show.

This component is responsible for segmenting y; - into four
distinct states: attack, sustain, release, and non-crowding. We
first divided the data into crowded (including attack, sustain,
and release) and noncrowded, as discussed in Section IV-B1.
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We then segmented the data into attack, sustain, and release
by considering the event purposes discussed in Section [V-B2.

1) Crowding Detection by LLR test

We first divided the data into crowded and non-crowded
states. However, because the magnitude of congestion fluc-
tuates between event venues, dividing raw data into crowded
and noncrowded is nontrivial. To address this issue, we pro-
pose a likelihood ratio (LLR) test-based crowding detection,
a statistical method for detecting deviations from historical
norms.

Let y; . be the daily density calculated using the historical
average for the same day of the week and time. Next, we
investigate whether y; - is significantly greater than y; ;. As-
suming that y; , follows the Poisson distribution, we test the
following hypotheses: Hy : y; - ~ Pois(:[y;+), H1 : yi,r ~
Pois(|z;,-) where Z; - is the mean parameter that satisfies
Zi,+ > y1,-. To execute this test, we employ the Expectation-
based likelihood ratio test proposed by Neill [42], where
the test statistic is the likelihood ratio LLR,(7), which was
formulated as follows:

y1710g¥i+(yl.77ylr) ifylr Zyl‘ra
LLR, = ’ T ' ’ ’ ’
/(7) { 0 otherwise.
(6)

yi,+ can be classified as crowded if LLR;(7) > 0 and
LLR,(7) is significant at a-level. Although determining the
statistical significance of a likelihood ratio generally requires
computationally expensive Monte Carlo methods, LLR,(7) is
significant at a-level if and only if 1 — Pr(X <y, ;) > o as
demonstrated by Zhou et al. [43]. Fig. 5(a) provides the result
of crowded (C) and non-crowded (N/C) density extractions.

2) Tri-State Segmentation by Event Purposes.

The extracted densities in the crowded state were further
segmented into a three tri-state: attack, sustain, and release.
Segmentation was performed by the event-purpose-by way to
obtain a shape that reflects the heterogeneity of the event pur-
poses. Thus, we categorized crowded events into several types
and introduced segmentation methodologies customized for
these purposes. In this study, we introduced the following two
types of event purpose:

« sports-type — These events have an attack, sustain, and
release sequence, each phase appearing independently. Typ-
ically hosted in stadiums or arenas, this category comprises
events, such as sporting matches (illustrated in Fig. 1(a)).

« exhibition-type — These events have a double-attack se-
quence, in the order of attack, sustain, attack, release. Gen-
erally organized in exhibition halls, this category includes
large-scale expositions, such as Tokyo Motor Show shown
in Fig. 1(b).

Customizing the segmentation method for each event purpose
is similar to defining the ADSR envelope for each musical
instrument. VATES can be extended to other event purposes

6

that are not addressed in this study (e.g., firework displays and
festivals) if the combination of the three states is determined.

In sports-type events, such as sports or concert events,
we observed the following: (1) entrance and exit times are
explicitly set by event timings. (2) Spectators stay at the venue
throughout the event. Thus, we segmented the crowding den-
sities as follows:

1) attack: From the start of crowding to event start.

2) sustain: During the event.

3) release: From the end of event to the end of crowding.
Fig. 5(b) illustrates the segmented results on a sports-type
event.

Exhibition-type events, such as large-scale expositions
staged in exhibition halls, exhibit congestion patterns distinct
from sports-type events. The observed characteristics were as
follows:

e Queue-induced crowding occurs before doors open, due to
exhibit enthusiasts arriving early for priority access. An
increase in crowd density is observed before the event starts
(6:00-9:00 in Fig. 1(b)). Moreover, these enthusiasts often
plan their transits in advance, resulting in an increase in
transit searches targeting this period, as shown in Fig. 5(c).

« The number of visitors increases again after the event starts
because non-enthusiast participants arrive (14:00-15:00 in
Fig. 1(b)).

e Majority of visitors refrain from staying until the event
termination, leaving before the event ends (15:00-20:00 in
Fig. 1(b)).

Based on these observations, exhibition-type events have a

double attack sequence in the order of attack, sustain, attack,

and release. Segmentation of the extracted crowd densities in

exhibition halls was performed by leveraging scheduled visits

and event timings as follows:

1) first attack: From the crowding start to the peak of sched-
uled visits.

2) sustain: Between the first and second attacks.

3) second attack: From event start to the peak of crowd
density.

4) release: From crowd density peak to the end of crowding.

Fig. 5(d) shows the segmented results on an exhibition-type

event.

C. ENVELOPE DEPICTION

This component learns and predicts the shape of the envelope
used to predict the crowd density y; . To learn the shape,
we modeled the following variables: (1) the start time of the
first attack state, (2) the time length of each state, and (3) the
crowd densities at the end of each state. We built a multilayer
perceptron (MLP) model to model these variables. For the
input of the MLP, we used the context, scheduled visit, and
time-of-event features.

Let#; 44 € {1, ..., T} be the start time of the k-th state and
Aty 4 € {1, ..., T} be the time length of the k-th state on the
event date d. Furthermore, ¢; 4 x is the crowd density at the
end of the kth state. If the kth state is released, we set ¢; 4 x =
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0; otherwise, we set ¢; g x = y1-, where 7 = #4511 — 1.
Because these values are all nonnegative discrete values, we
assumed that they follow individual Poisson distributions and
formulated the MLP as follows:

h™Y .= MLP(cq, €14, %14, 1,05 Onip), @)
In7(B)a :=wg Iy S
where ﬁ € .Ad = {tl7d71} U {Al17d7k}kK=1 U {Cltdtk}f=1 s
®)

where 7([3), is the mean parameter of the Poisson distribution
whose 3 follows, hMLP € R¥ andw. € RY, and K is the
number of states.

D. STATE SEQUENCE LABELING

This component learns and predicts the states for the target
time steps (7 ~ 7 + p) from the envelope variables predicted
by the MLP described in Section IV-C. As changes in crowd
density are associated with segmented state transitions, ac-
quiring this knowledge can facilitate the capture of density
shifts under crowding conditions. Let s; , € R* be a one-
hot vector for a state label 5,, € S := {A,S,R,N} in
a time step 7, wherein A, S, R, and N are attack, sustain,
release, and non-crowded, respectively. Building on Softmax-
based classification, we extended the baseline LSTM model
by integrating the envelope variables as inputs as follows:

:= Concat(h{?), RYILY Am(B)a}pea)

c R2H+2K+17 (9)
he,...h:y, :=LSTM(0;; OrsTM™), (10)
§; r4;j = log(Softmax(W;h,4;)), j=0,...,p, (11)

where §; -4; € R* represents the logit for classification and
W; € R**H is the learning parameter.

E. STATE-AWARE CROWD DENSITY SYNTHESIS

Based on the envelope variables predicted in Section I'V-C and
the state sequence predicted in Section I'V-D, this component
synthesized crowd density y; . We reformulated the mean
parameter of the Poisson distribution for y; , as follows:

k. := Concat(h.,s; ,), (12)
111)\177._;'_] —W h:'-i-])J:O""’p’ (13)

where ij € R*TH denotes the learning parameter.

Given the ground-truth crowd density y; -, envelope vari-
ables 8 € Ay, and state labels s; ,, our task can be regarded
as multi-task learning that incorporates Poisson regression
and multi-class classification problems. Consequently, we
derived the following loss function:
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L(OrsT™, OmLp, WE;% Wop, Woip, W3)

== DD (L) + Lslstr4i) + La(aa) |
4 | 1 j=0

(14)
where
Ey(yl,‘r+j) =1In POiS(yl,T+j‘)\l,T+j)7 (15)
S|
‘C S1 T+j Z{sl T+]} IOg{sl T+J}t» (16)
Z In Pois(ay|7(8)a)- (17

BeAL

Ly(y1,7+;) and Lg(cy) are the NLL of the Poisson distribu-
tion, and L,(s; ;) is the cross-entropy loss. Notably, this
model can be trained end-to-end.

V. EXPERIMENTS
VATES was empirically evaluated through the following ex-
periments.

o Forecasting Performance Evaluation (Section V-C): We
evaluated the forecasting performance in crowd density,
start, and end times of crowding in various events with both
synthesized and real data.

o Qualitative Prediction Evaluation (Section V-D): We pro-
vided case studies with visual representations of forecasted
crowding during actual events.

o Crowding Synthesis with Manipulated Envelopes (Sec-
tion V-E): We demonstrated that the crowd density transi-
tion predicted by our synthesizer-inspired framework can be
controlled when we manipulate the envelope externally.

« Ablation Study (Section V-F): We identified the source of
enhancement in the forecasting performance of VATES.

A. DATASET

Although there are various open datasets that are often used
for modeling the human mobility or crowd flows, such as
Yellow Taxis in New York City > and BikeNYC?, all of these
datasets do not contain the people’s visit schedules such as
transit search logs. To the best of our knowledge, there is no
open dataset that is applicable to the LCE forecast. Thus, we
created synthetic data that behaved the LCE and collected real
data from large-scale real-world events.

1) Synthetic Data

We experimented on synthesized sports- and exhibition-type
event data from Poisson models as follows: y, = y,. +
Ay, where y. is the daily density sampled from a Poisson
model Pois(-| exp (¢, Wt)) with é; € RC sampled from

Zhttps://opendata.cityofnewyork.us/overview/
3https://citibikenyc.com/
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TABLE 1. Summary of four large-scale events used in an empirical evaluation.

Event Name || Rugby World Cup Final | J1 League Final Section Comic Market Tokyo Motor Show
Overview Rugby Match Soccer Match Self-Published Comic Show | Auto Show for Cars, etc.
Date 11/2,2019 12/7,2019 12/28 ~ 31, 2019 10/24 ~ 11/4, 2019
# of visitors 70,103 63,854 750,000 in total 1,300,900 in total
Event Venue Nissan Stadium (https://www.nissan-stadium.jp/) Tokyo Big Sight (https://www.bigsight.jp/)
Event Type sports exhibition

a uniform distribution Uni(0,1) and W € RE*T sampled
from Uni(0,0.04), and Ay, is the surge in density dur-
ing crowded events, sampled from another Poisson model
Pois(-|p-) where pi, is changed according to the state tran-
sition. The start time of events #s.,4+ Was randomly sampled
between 8 am and 2 pm, and the time length of the event was
randomly sampled between 5 and 10 h.

To simulate sports-type events, we categorized the time
period during an event as Sustain, and p, was set to fipcak €
[250, 500] throughout Sustain. The attack and release dura-
tions were two if ppeax < 300, three if 300 < ppear < 400,
and five otherwise. p is defined as zero during noncrowded
conditions, linearly increases from zero during attack, and
linearly decreases to zero during release. Moreover, we gen-
erated a scheduled visit feature x; with a Gaussian kernel as
xa = {tppeax|t = N(iltstart, 0%),j =1, ..., T}.

To simulate exhibition-type events, we denoted the start
time of the second attack as #,.t, and its duration as one if
Hpeak < 300, twoif 300 < fipeakx < 400, and three otherwise,
after which the time until the event ends is categorized as re-
lease. Before the second attack, we introduced the first attack
and sustain, where the duration of the first attack was the same
as that of the second attack, and the duration during sustain
was {1,2,3}. We assigned s, to a fixed pipeax € [250, 500]
at the end of the second attack, and p; = ppeax/2 during
sustain.

For the synthetic data, we generated 180 days of training
data, within which 1% (equating to 1 ~ 2 days) were desig-
nated event dates and the remaining 99% of the training data
was non-crowded. This aimed to simulate the situation where
the event inducing the crowding is infrequent and abnormal,
as discussed in Section I. Additionally, we generated 180 days
of event data for evaluation.

2) Real Data: GPS logs, Transit Search logs, Event Calendar

To evaluate VATES based on real data, we collected GPS-
based mobility logs, transit search logs and event calendar
information. The GPS logs were procured using a mobile ap-
plication from LY Corporation on October 1st, 2019 ~ Febru-
ary 28th, 2020. Each record, collected with user consent, was
entirely anonymized by replacing the user IDs with dummy
identifiers and was characterized by timestamp, latitude, and
longitude. We aggregated the mobility logs within each event
venue, demarcated by a 500 x 500 m square area at each
time segment, and tabulated their quantity as crowd density.
Hence, we refrained from using any dataset with person-
ally identifiable information for the data analysis and model
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construction. For the scheduled information of the user, we
also used transit search logs, which were searched mainly by
train passengers. These logs were assembled using the transit
search engine*, which was released by LY Corporation. Each
record contained an anonymized user ID, search timestamp,
scheduled timestamp, and destination station. Analogous to
the mobility logs, we enumerated the volume of search
records per station and time segment, thereby avoiding the
use of personal information. We also employed event calendar
data for time-of-event information. Each record comprises the
date, event name, start time, and end time. We formulated
time-of-event features based on these data.

Our model was evaluated for four large-scale, non-regular,
and abnormally crowded events staged in Japan on October
Ist, 2019 ~ February 28th, 2020, as presented in Table 1.
We used each event as the evaluation data, and the rest of
the data that shared the same event purpose was used as the
training data. The J1 League Final Section, typically a weekly
event, was considered an abnormally crowded event because
it attracted the largest recorded attendance.

B. EXPERIMENTAL SETTINGS

1) Model and Feature Settings

We considered one day as a 24-h period, and the number of
time segments T was set to 24 (i.e., one time segment denotes
a 1-h period). Following previous research [18], the start of
the day was at 3:00 a.m., which had the least active popula-
tion, and the end was at 3:00 a.m. the next day (i.e., 27:00 in
24-h notation). To execute the forecasting as of d — 7, we set
pa = 7. We also allocated p,, = 7 to consider the schedule
patterns specified two weeks before the event day. For the
context feature ¢z, we use the days of the week, holidays, and
weekdays or weekends. By implementing one-hot encoding,
the days of the week became a seven-dimensional vector,
whereas holiday-or-not and weekday-or-weekend were two-
dimensional vectors. By employing a tensor product to com-
pose these features, we obtained ¢; € R2?®. We formulated
the time feature as ¢t = {ulu = N(j|t,02),j = 1,...,T}
by following [18]: For the time-of-event feature, we encode
the event times with multi-hot encoding, yielding e5P =
{I[t € {ton, tot}]|t = 0,...,T} € RT, where t,y, is the start
end 7,g is the end time of the event. For the event purpose
feature denoted as u; 4, we use one-hot encoding of sports and
exhibition, which yields u; 4 € R2. In VATES, we use a four-
layer LSTM and MLP with 256-dimensional outputs in the
hidden space, followed by ReL.U activation. We set p = 12

“https://transit.yahoo.co.jp/
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and o = 1 x 107, We adopted a batch size of 64 and used
the Adam optimizer with a learning rate 2 x 10~%.

The training data were separated in a 9:1 ratio, with the
major and minor segments used as the initial training data and
validation, respectively. Early stopping was used in the model
training, whereby the model was initially trained solely on
the initial training data and the training was repeated until the
loss in the validation data stopped improving over 10 epochs.
The model was then trained for 10 epochs on all training data,
including the initial training and validation data.

2) Evaluation Metrics

To evaluate the forecasting performance of the LCE, we adopt
three error metrics: (1) mean absolute error (MAE) for crowd
densities within each state, namely, attack (A), sustain (S),
release (R), and non-crowded (N), (2) mean absolute starting
time error (MASTE), signifying error in crowding starting
time, and (3) mean absolute ending time error (MAETE)
representing error in the ending time of crowding. To calcu-
late the MASTE and MAETE, the start and end times of the
crowding have to be predicted. To predict them, we applied
the LLR test presented in Section IV-B1 to the prediction
results of the crowd densities, where the minimum time of
the crowding period was regarded as the start time, while
the maximum time of the crowding period was regarded as
the end time. LLR can fail to detect crowded density if the
predictions underestimate the ground truth at a-level. When
we evaluated the performance of the synthetic data, treated
the failure case of LLR as NaN, filtered out the NaN result,
and calculated MASTE and MAETE from the remaining test
data. We further tested the accuracy (Ace.) for evaluating the
number of success and failure cases in the LLR test for each
method in the synthetic data experiment. When evaluating
the performance on real data, we denoted it as NaN in the
experimental results. Note that MAEs under each state were
not NaN, and we evaluated them on all data without filtering.

3) Comparison Methods

Firstly, we compared VATES with the side-information-based

methods for forecasting crowding including a state-of-the-art

approach as follows:

« Event-aware Historical Average (EHA): This calculates
the average values corresponding to the same time seg-
ments on the day when an event was held within the
training data.

« Bilinear Poisson Regression (BPReg*) [18]: A regression
model formulated to use side information as input features.
While the original work adopted only the contextual and
time features, we expanded its usage of side information to
incorporate the scheduled visit and time-of-event features.

o CityOutlook [12]: A state-of-the-art crowding forecasting
method using side information including visitors’ sched-
ules. Following the original work, this method adopts con-
textual, time, and scheduled visit features.

o Non-Segmental LSTM (NS LSTM, Section III-B): A
canonical LSTM model, introduced as a baseline method
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of VATES in Section III-B. This model simply consid-

ers the event purposes but does not employ the proposed

synthesizer-inspired technique.

Note that these baselines were trained individually for each

event purpose, which was also adopted in VATES.

Additionally, we compared VATES with the survival anal-
ysis (SA) [10]-based method, which is the state-of-the-art ap-
proach for forecasting the duration of crowding. We compare
VATES with the following SA-based methods.

« Survival Analysis (SA) [10]: A state-of-the-art method for
forecasting the duration of crowding. This method fore-
casts the end time of crowding after its start. While we used
the original profiles as input features except POI vectors,
we replaced the counts of taxi pick-up and drop-off with the
crowd density data for the recent and target profiles. We did
not use POI vectors because all the target POI in this study
was the event venue. We evaluated the performance in the
original setting, that is, 5-h ahead of prediction.

« SA + {BPReg, CityOutlook, VATES}: This is the exten-
sion of survival analysis-based prediction [10], where the
input crowd density features of the method are replaced by
the forecasted results of BPReg, CityOutlook, and VATES
in the testing phase. We evaluated the performance of this
method on the one week ahead of forecasting.

We did not compare VATES with the existing simulation-

based crowd flow prediction methods such as [3], [4], [7], [8]-

This is because we are interested in the persistence of crowd-

ing at the event venue one week ahead, which is orthogonal to

the spatiotemporal crowding occurrence several hours ahead
that was addressed by the simulation-based methods.

We implemented VATES and the comparison methods
with the MapReduce framework implemented in Apache
Spark [44] and the BigDL framework [45] for our empirical
evaluation.

C. FORECASTING PERFORMANCE EVALUATION
Table 2 and 3 list the comparative performance analysis of
VATES and the baselines using synthetic and real data, re-
spectively. Note again that NaN in Table 3 signifies instances
in which the LLR test failed to detect crowding owing to the
underestimation of crowd densities. For the definition of the
used error metrics, see Section V-B2. On average, the results
show that VATES improved the prediction performance by
24.3% in MAE, 6.6% in MASTE, and 26.1% in MAETE,
respectively, compared with the state-of-the-art methods.
From the results of the synthetic data in Table 2, although
EHA showed the minimum errors in MAE for the N state,
EHA showed the poorest performance in MAE across all ASR
states, MASTE, MAETE, and Acc. CityOutlook achieved
a relatively small MAE on the A state for the sports-type,
indicating its capabilities to capture the start of crowding.
However, it failed to show satisfactory performance on MAE
for the S and R states, MASTE, and MAETE. However,
VATES outperformed all baselines designed for one-week-
ahead forecasting, indicating the effectiveness of the pro-
posed envelope-based strategy.
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TABLE 2. Performance comparison of VATES and Baselines in MAE for each state, MASTE, MAETE, and Accuracy (Acc.) on synthetic data. The unit of MAE,
MASTE/MAETE, and Acc. are the number of GPS logs, hours, and %, respectively.

sports-type

exhibition-type

Model MAE} MASTE, MAETE| Acc.t MAE} MASTE, MAETE| Acc.t
A S R N A S R N

EHA 2462 3682 1477 188 237 236 17 4066 5269 2736 177 237 236 17

BPReg* [18] 2202 3071 199.0 222 2.1 13 985 2757 3579 2198 32.9 34 25 985

CityOutlook [12]  124.1 248.1 1154 589 33 35 993 3274 5233 2445 1481 27 37 1000

NS LSTM (bascline) 2000 938 154.0 158.1 5.1 17 1000 2258 2800 208.0 1382 3.0 24 1000

VATES (proposed)  96.6 85.1 1098 415 17 L1 1000 2121 2642 1708 822 25 20 100.0

TABLE 3. Performance comparison on real data. NaN represents instances wherein the LLR test failed to detect crowding. The unit of MAE is the number

of GPS logs, and the units of MASTE and MAETE are hours.

Rugby World Cup Final

J1 League Final Section

Model MAE} MASTE, MAETE] MAE} MASTE, MAETE/
A s R N A S R N

EHA 280 6655 1030 338 5.0 20 3614 6200 565 249 40 3.0

BPReg* [18] 1734 5960 825 180 0.0 20 1943 6490 2380 82 10 2.0

CityOutlook [12] 3068 7065 1020 50.6 7.0 40 3114 6425 1485 220 2.0 40

NS LSTM (bascline)  433.6 4535 618 114 1.0 20 2541 6055 2720 95 0.0 3.0

VATES (proposed) ~ 66.6 2535 262 152 0.0 10 1899 2330 1495 125 10 1.0

Comic Market Tokyo Motor Show

Model MAE} MASTE, MAETE] MAE} MASTE, MAETE]
A s R N A S R N

EHA 1526 1210 790 199 NaN NaN 853 334 998 84 20 5.0

BPReg* [18] 540 185 403 114 0.0 10 1810 1984 1388 94 NaN NaN

CityOutlook [12] 910 1650 670 263 1.0 10 1747 3598 768 129 2.0 40

NS LSTM (bascline) 518 1015 467 84 0.0 10 1263 1220 613 95 8.0 0.0

VATES (proposed) 344 715 310 115 0.0 00 647 646 352 54 3.0 10

Table 3 further confirms the promising forecasting per-
formance of VATES across all error metrics in real events.
From the table, EHA exhibited acceptable performance in
the R state of the J1 League Final Section and the S state
of Tokyo Motor Shows. However, this result was attributed
to the coincidental pattern present in the training data, which
is further discussed in the qualitative evaluation in Section
V-D. BPReg* achieved the best MAE results for the S state
in the Comic Market, while simultaneously presenting worse
results across other metrics. CityOutlook demonstrated su-
perior results in MASTE for the Tokyo Motor Show; how-
ever, it underperformed in the metrics for all other events.
Conversely, in the case of VATES, we observed a consistent
improvement in MAE for the A state and either the best or
second-best results for MAE in the S state, MASTE, and
MASTE across all events, while simultaneously producing
the smallest errors in MAE for the R state in the three events
except for the J1 League Final Section. We further discuss
the fact that there were cases that VATES underperformed the
baselines in Section V-D.

VATES did not provide an accurate forecasting of crowd
density in the N state, which is out of our research scope. The
prediction of non-crowded states can be performed by other

10

models (e.g., EHA) given the accurately predicted crowding
start and end by VATES.

Note that, in VATES, the overall improvement in MASTE
was smaller than the improvement in MAETE. This could be
because state-of-the-art methods, such as CityOutlook, were
specialized to forecast the start of crowding.

We further compared our model with the survival analy-
sis (SA) [10]-based approaches. Since the SA-based method
predicts the end time of the crowding, we evaluate the perfor-
mance of these methods only in MAETE. Table 4 and Table 5
list the forecasting performance.

TABLE 4. Performance comparison between SA [10]-based methods and
VATES on SYNTHETIC DATA in MAETE | [h].

Model forecast ahead  sports-type  exhibition-type
SA+BPReg 1 week 29 29
SA+CityOutlook 1 week 1.9 22
SA+VATES 1 week 1.6 2.7
VATES (proposed) 1 week 1.1 2.0
SA [10] 5 hours 0.9 1.2

From the tables, the original SA (listed in the bottommost),
which can only predict the end time of crowding 5 h ahead,
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TABLE 5. Performance comparison between SA [10]-based methods and
VATES on REAL DATA in MAETE | [h].

Model forecast ahead Rugby J1 Final
SA + BPReg 1 week 3.6 1.8
SA + CityOutlook 1 week 3.0 2.0
SA + VATES 1 week 3.0 1.6
VATES (proposed) 1 week 1.0 1.0
SA [10] 5 hours 1.4 1.0
Model forecast ahead =~ Comiket Motor
SA + BPReg 1 week 3.6 2.0
SA + CityOutlook 1 week 3.6 2.0
SA + VATES 1 week 34 1.0
VATES (proposed) 1 week 0.0 1.0
SA [10] 5 hours 1.4 0.6

performed better than VATES in the results with the synthetic
data, and in the Tokyo Motor Show. However, none of the
extensions (i.e., SA + BPReg, CityOutlook, VATES, which
are listed above VATES) for one-week-ahead forecasting
achieved better performance than VATES. This is because
the input feature of these extensions is the forecasted crowd
densities, which consist of forecasting errors.

D. QUALITATIVE PERFORMANCE EVALUATION

To understand how VATES behaves in real-world events, we
visualized the crowd densities predicted by VATES and the
baselines on the event date in Fig. 6.

In Fig. 6(a), BPReg*, which demonstrated superior perfor-
mance in MAE for the A state and MASTE, simply predicted
a density increase at approximately 16:00, followed by a
predicted immediate decrease. Fig. 6(b) shows a similar trend,
with BPReg* (and NS LSTM) resulting in an underestimation
of density increase and early decrease. The output of EHA,
which showed the minimum MAE for the R state in Section
V-C, illustrated a gradual increase, consequently leading to
an accurate density decline. However, VATES accurately cap-
tured the increase, sustain, and decrease in the density of both
sports-type events.

In Fig. 6(c), EHA and CityOutlook predicted an increase
until 9:00 but overlooked the secondary A state within the
9:00 ~ 11:00 window. Contrarily, BPReg*, NS LSTM, and
VATES identified an increase twice in the double attack;
NS LSTM accurately captured the first A state, whereas
VATES outperformed the other models in predicting the sec-
ond. However, an unexpected density reduction occurred at
9:00, despite the S state’. BPReg* minimized the preceding
density increase and consequently provided the most accu-
rate prediction. Although VATES maintained the density and
overlooked the sudden decline, it subsequently demonstrated
quantitatively and qualitatively superior forecasting.

5This may be likely because of several factors such as loss of GPS
signal from stationary users and instances of phone shutdowns for battery
conservation. However, the crowd density at Comic Market, known for its
pre-opening queues, was presumably maintained.
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FIGURE 6. Visualization of forecasting results.

Finally, in Fig. 6(d), EHA and VATES methods demon-
strated competitive forecasting for the first A and S states.
Subsequently, EHA decreased the density, reconfirming its
results as coincident, whereas VATES identified a second A
state. These visualizations reveals VATES’ promising perfor-
mance in the LCE forecast.

E. CROWDING SYNTHESIS WITH MANIPULATED
ENVELOPES

To further highlight the sensitivity and synthesizability of
VATES to crowd states, we examined the predicted density
transition under external envelope manipulation. After train-
ing, the model structure was adjusted to consider the envelope
attributes (Eq. (7)) and state transitions (Eq. (12)) as external
inputs. The manipulated envelopes were then fed into the
model input.

Fig. 7 depicts the synthesized crowd density transitions. As
shown in Fig. 7(a), providing an N input (Type 2) instead
of an A input (Type 1) results in non-increased patterns of
density. The result indicates that a reasonable crowd density
increase has been modeled for the change from N to A, i.e.,
the start time of crowding. By feeding the model with S (Type
2) instead of A (Type 1), as shown in Fig. 7(b), the density
temporarily stopped increasing during the sustained period.
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FIGURE 7. Result of crowding synthesis. The bottom shows the state transitions of the manipulated envelopes, and the top shows the synthesized density

curves.

Furthermore, as demonstrated in Fig. 7(c), providing R (Type
2) instead of A (Type 1) triggered the model to begin reducing
the density, in line with the state transition. From these results,
we confirmed that the VATES was sensitive to the given
envelope, indicating that VATES acquired the synthesizability
of the heterogeneous crowd density transition.

F. ABLATION STUDY

VATES is characterized by (1) the envelope depiction (Sec-
tion IV-C) and (2) state sequence labeling (Section IV-D).
To analyze the importance of each contribution, we assessed
the forecasting performance of the real-world four events
using the following variants of VATES: (1) without envelope
depiction, (2) without state sequence labeling, and (3) without
both (akin to NS LSTM).

Table 6 summarizes the substantial contribution of the
envelope depiction towards performance enhancement, while
the state sequence labeling appeared to weaken performance
compared to NS LSTM. Contrarily, integrating both ele-
ments, as in VATES, produces the best or near-best perfor-
mance. However, the envelope illustration in Comic Market
did not substantially contribute to MAE reduction during the
Sustain and Release states, as it did in other events. This is
probably owing to inaccurate crowding envelope prediction
caused by a sudden decline during the Sustain state. Owing
to the successful state sequence classification, VATES main-
tained a stable performance throughout this event.

VI. DISCUSSION

A. FINDINGS FROM THE EXPERIMENTAL RESULTS.

As discussed in Section II, existing crowding forecast and
TSF methods can be divided into two groups: those that
assume temporal autocorrelation [4], [8], [37], which is not
assumable in the one week ahead of forecasting, and those
that adopt side information as covariates [18], [46]. VATES
belongs to those that use side information, and we com-
pared VATES with existing side-information-based methods
including the state-of-the-art method CityOutlook [46]. The
synthetic data contained only 1% of events in 180 days of
data, meaning that there were only one or two events in six
months. The experimental results showed that even using the
hours and purposes of the event, it was still not possible for
the existing side-information-based methods to capture het-
erogeneous LCEs. However, modeling to capture the shape
in the VATES framework enabled accurately predicting the
LCEs.
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The VATES was also compared to a recently proposed SA-
based method [10] for predicting the duration of the crowded
events. The experimental results showed that although the
VATES (forecasting one week ahead) was partially inferior
in performance to the original SA-based method (forecasting
5-h ahead), the VATES was consistently superior to the exten-
sion of the SA with [18], [46] for forecasting one week ahead.
Surprisingly, there were also the cases where the VATES
performed better or similarly to the SA-based 5-hour-ahead
forecast.

Furthermore, we showed the crowding synthesis results in
Section V-E. The results indicate that the VATES can simulate
the LCE for fictional events by assuming a certain state
transition. This simulation could be critical for anticipating
contingencies under crowded events. Based on these results,
we believe that the VATES is durable enough for one-week-
ahead crowding forecasting in the real world.

B. APPLICABILITY OF VATES TO OTHER EVENT PURPOSES.
We believe that the applicability of VATES is not limited to
sports games and exhibition events, but extends to other event
purposes (e.g., fireworks displays, festivals). As mentioned in
Section I, all crowded events have phases where the crowd
density increases from the start of crowding and decreases
towards the end of crowding, regardless of the purpose of the
event. VATES captures such starts and ends through the shape
modeling, thus it should be possible to forecast other events.
Our future work will address other types of event purposes.

C. LIMITATIONS AND EXCEPTIONS.

We are aware that VATES may have a limitation, that is, the
state transition is performed manually for the predefined event
purposes. This may make the state transition infeasible in the
following two cases: (1) when multiple event purposes are
mixed in a single event, and (2) when the event is unprece-
dented. To address this issue, it may be beneficial to embed
events into feature vectors. Events often have descriptions
available in advance. By using pretrained large language
models (LLMs) such as GPT-4 [47], a vector representation
of events could be obtained from the description. Therefore,
it may be possible to find precedented events that are close
to the events with mixed or unprecedented purposes. We can
also cluster the events by using the vector representation, thus
it may be possible to automatically extract shapes and states
from the average of the crowd density transitions for events
that belong to the same cluster. We plan to address these issues
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TABLE 6. Predictive performance comparison for ablation study at four events. The unit of MAE is the number of GPS logs, and the units of MASTE and

MAETE are hours.

Rugby World Cup Final J1 League Final Section
Model MAE]| MASTE| MAETE| MAE/| MASTE| MAETE|
A S R N A S R N
VATES (proposed) 66.6 2535 262 152 0.0 1.0 189.9 2330 1495 125 1.0 1.0
wlo Envelope Depiction ~ 920.6 1088.5 107.8 29.6 2.0 3.0 2484 23255 3480 7.5 0.0 1.0
w/o State Sequence Labeling 1454 1140 61.3 21.2 1.0 1.0 369.6 573.0 160.0 11.5 4.0 1.0
wloboth (= NSLSTM)  433.6 4535 61.8 114 1.0 20 2541 6055 2720 9.5 0.0 3.0
Comic Market Tokyo Motor Show
Model MAE] MASTE| MAETE] MAE} MASTE| MAETE|
A S R N A S R N
VATES (proposed) 344 715 310 115 0.0 0.0 647 646 352 54 3.0 1.0
wlo Envelope Depiction ~ 25.0  38.0 21.0 129 0.0 1.0 1313 1006 762 7.3 9.0 2.0
w/o State Sequence Labeling 44.6 1545 87.3 119 0.0 2.0 1043 624 943 65 4.0 1.0
wloboth (=NSLSTM)  51.8 1015 467 84 0.0 1.0 1263 1220 613 95 8.0 0.0

in future work.

There are exceptional events that VATES cannot forecast;
VATES assumes that the event is publicly announced in
advance. However, VATES cannot predict sudden crowding
caused by events that are not scheduled in advance, such as
flash mobs, spontaneous protests, or vigils for recent events.
Although prior work [48] has shown that the SNS posts
increase prior to such social events, which may suggest that
the number of SNS posts can be used as an indicator of future
crowd gatherings, it may be still difficult to forecast the LCE
in such events with many uncertainties.

D. REPRODUCIBILITY OF VATES IN TERMS OF DATA.
GPS mobility log. Using GPS logs to capture crowd densi-
ties is not a problem in terms of reproducibility. In recent
years, various applications and services have been logging
the user’s GPS-based locations, and various studies have been
conducted using the mobility logs (e.g., "Konzatsu-Tokei (R)"
from ZENRIN DataCom Co., Ltd. [4], a mobile application
from LY Corporation [49], dataset from Tencent [50]).
Transit search log. We obtained people’s scheduled visits
from the transit search released by LY corporation; however,
the other records such as route searching history on map
applications (e.g., Google Maps, Yahoo! Map, ZENRIN Map,
Japan Transit Planner, NAVITIME) or logs on travel reserva-
tion applications (e.g., Booking.com, Travelko) can also be
used as the scheduled patterns.

VII. CONCLUSION

We have presented the VATES to forecast the LCE one week
in advance, which no work had realized to date. Inspired by
acoustic synthesis, we discussed the benefits of learning the
shape of crowd density transition for forecasting the hetero-
geneous LCE. Experimental results using synthetic and real
data validated the efficacy of our models. Compared with
the state-of-the-art methods, the VATES showed a 24.3%

performance improvement in MAE when predicting crowd
density transitions during crowding, and 6.6% and 26.1% per-
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formance improvement in MASTE and MAETE when pre-
dicting the start and end times of crowding, respectively. We
also confirmed the feasibility of synthesizing crowd densities
by externally controlling the state transition, which indicated
that the VATES could simulate fictional events. These results
suggest that our method can enhance the safety and mobility
of individuals in urban environments, thereby contributing to
smarter city management and improving the quality of life for
urban populations.

Future work will address other event purposes, such as
firework displays and festivals, by tailoring state transitions
for such events. We plan to investigate the extensive applica-
bility of our model to numerous real-world events, including
those that occurred after the COVID-19 epidemic. Automatic
extraction of event purposes, which are now predefined by
humans, should also be considered. Because descriptions
written by event organizers are often public, we plan to lever-
age language embeddings generated by LLMs [51].
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