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ABSTRACT
Forecasting rail congestion is crucial for efficient mobility in trans-
port systems. We present rail congestion forecasting using reports
from passengers collected through a transit application. Although
reports from passengers have received attention from researchers,
ensuring a sufficient volume of reports is challenging due to pas-
senger’s reluctance. The limited number of reports results in the
sparsity of the congestion label, which can be an issue in build-
ing a stable prediction model. To address this issue, we propose a
semi-supervised method for congestion forecasting for trains, or
SURCONFORT. Our key idea is twofold: firstly, we adopt semi-
supervised learning to leverage sparsely labeled data and many
unlabeled data. Secondly, in order to complement the unlabeled
data from nearby stations, we design a railway network-oriented
graph and apply the graph to semi-supervised graph regularization.
Empirical experiments with actual reporting data show that SUR-
CONFORT improved the forecasting performance by 14.9% over
state-of-the-art methods under the label sparsity.
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1 INTRODUCTION
Forecasting rail congestion is crucial for transport systems, as con-
gestion can pose risks such as commuters falling from platforms,
breaking windows, or operations with doors unclosed. Tradition-
ally, congestion has been monitored through ticket gates [8] and
CCTV footage [9]. However, ticket gates could not quantify pas-
sengers inside individual trains. Moreover, it is well known that
vision-based technique like CCTVs suffers from occlusion [9].

Crowdsourced information provided by passengers has received
attention from researchers. Lathia et al. demonstrated the effec-
tiveness of crowdsourced data for timely updates on congestion
in transportation systems [6]. In fact, many transit apps, such as
Jorudan’s Japan Transit Planner, NAVITIME, and LY Corporation’s
Transit Navigation App, have begun collecting congestion reports
from passengers. Our study aims to forecast rail congestion by
leveraging these passenger-submitted reports.

However, passenger reports are often sparse, as passengers may
hesitate to submit reports on heavily crowded trains. As a result,
many railways, stations, and time slots lack congestion labels, mak-
ing it challenging to forecast congestion stably, especially for dates
and times with no past reports.

To address this issue, we propose railroad-graph-based semi-
supervised methodology for congestion forecasting of train, or
SURCONFORT, which trains a neural network (NN) to classify the
degree of congestion at a given station, date, and time. The core idea
of SURCONFORT is twofold: (1) the adoption of semi-supervised
learning (SSL) for mitigating the need for labeled data, and (2)
railroad network-oriented graph for complementing predictions for
unlabeled data by leveraging geospatially nearby labeled stations.

Firstly, we adopt SSL, which has shown promise in computer
vision and image classification in recent years [2]. SSL uses sparsely
labeled data (e.g., congestion labels for railways, stations, and time
slots) and large amounts of unlabeled data (containing only co-
variates) to improve predictive performance over models trained
on labeled data alone. SSL relies on finding relationships between
labeled and unlabeled data, often through graph-based methods [7].
However, scarce labeled data makes it difficult to build these graphs
or can result in label prediction errors propagating across them.

Secondly, to build an effective graph, we focus on the railroad
network, aiming to forecast congestion for unlabeled data using
labeled data from nearby stations. Cai et al. found that rail conges-
tion tends to propagate through a network [4], meaning nearby
stations often share similar congestion levels, while distant ones
differ. To capture this, we design a railroad graph where nodes rep-
resent stations, and edges reflect station connectivity, direction, and
proximity. We then apply graph regularization to the NN, ensuring
similar predictions for nearby stations on the railroad graph.
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(b) Descriptor space formed by fully-supervised methods (left) and existing semi-
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Figure 1: (a) Conceptual illustration of our problem (left) and the descriptor space in an ideal state (right). The shape of the
data point represents the sample congestion at each adjacent station (circle for station A, star for station B, triangle for station
C), and the three colors represent the level of congestion at each station (blue for congestion level 1, orange for 2, red for
3). Samples missing labels in the UGC data are in gray, and the actual congestion level is reflected in the border’s color. (b)
Conceptual illustration of descriptor space formed by fully-supervised methods (left) and existing SSL methods (right).

The contributions of this work are as follows: (1) we propose
SURCONFORT for forecasting train congestion by using sparse
passenger reports; (2) we build a railway graph reflecting both line
connectivity and geographical proximity to ensure that predictions
for proximate stations are similar; (3) we demonstrate the superior-
ity of SURCONFORT over state-of-the-art methodologies by using
actual reporting data collected through a transit application.

2 PRELIMINARIES
Problem Formulation. As shown in Fig. 1(a), our goal is to fore-
cast train congestion based on user posts. Users report train conges-
tion levels through a transit app after searching for routes. When
submitting, they choose one of four congestion levels: 1 (able to sit),
2 (able to stand comfortably), 3 (shoulders touching), or 4 (unable
to move). Each post includes the last departure station, date and
time, and the selected congestion level.

We model train congestion using information about stations,
dates, and time periods. Let 𝑠 represent a station, 𝑑 a date, and 𝑡

a time period. The station feature is defined as 𝒔 ∈ R𝑆 , where 𝑆
is the number of stations on a railway line. The context feature
for date 𝑑 , 𝒄 (𝑑 ) ∈ R9, includes the day of the week and holiday
status. A day is divided into𝑇 segments (e.g.,𝑇 = 144 for 10-minute
intervals), and the time feature is 𝒕 ∈ R𝑇 . These features are created
using 1-of-K encoding. The degree of congestion is the average user-
reported level, discretized as 𝑦 (𝑠,𝑑,𝑡 ) ∈ 𝐶 := {0, 1, 2, 3} at station
𝑠 , date 𝑑 , and time 𝑡 . Using the above notation, we can express
a collection of 𝑛 samples 𝑋 = (𝒙1, ..., 𝒙𝑙 , 𝒙𝑙+1, ..., 𝒙𝑛), where each
sample 𝒙𝑖⊤ = [𝒔𝑖⊤, 𝒄𝑖⊤, 𝒕𝑖⊤] ∈ X corresponds to a tuple of station,
date, and time (𝑠, 𝑑, 𝑡) indexed by 𝑖 . The first 𝑙 samples (𝒙𝑖 for 𝑖 ∈ 𝐿 =

{1, ..., 𝑙}), denoted as 𝑋𝐿 , are labeled according to 𝑌𝐿 = (𝑦1, ..., 𝑦𝑙 ).
The remaining 𝑢 = 𝑛 − 𝑙 samples (𝒙𝑖 for 𝑖 ∈ 𝑈 = {𝑙 + 1, ..., 𝑛}),
denoted as 𝑋𝑈 , are unlabeled due to limited submission data for
certain stations, dates, and times.

Our goal is to build a classifier using labeled samples 𝑋𝐿 with
𝑌𝐿 and unlabeled samples 𝑋𝑈 . The classifier is a model that takes
an input from X and outputs a vector of class confidence scores
for congestion, denoted as 𝑓𝜽 : X ↦→ R4, where 𝜽 represents the

model parameters. The predicted congestion level is the one with
the highest confidence score, given by𝑦𝑖 = arg max𝑗 𝑓𝜽 (𝒙𝑖 ) 𝑗 , where
𝑗 is the 𝑗-th dimension of the vector.

Challenges in Modeling Congestion with Sparse Passenger
Reports. As shown in Fig. 1(b), when the dataset contains limited
labeled samples, such as user-generated content (UGC) missing key
congestion indicators, neural networks trained in a fully-supervised
manner struggle to capture meaningful patterns. This can lead to
dispersed descriptors within the same congestion level, making
accurate predictions difficult. Semi-supervised methods, like LP-
DeepSSL [3], attempt to mitigate this by using pseudo-labels and
label propagation, but they are prone to compounding errors due
to inaccurate affinity matrices. As a result, label mispredictions can
propagate through the model, reducing overall performance.

3 PROPOSED METHOD: SURCONFORT
The previous section highlights that the key challenge in predicting
sparse data is creating optimal descriptor spaces within the net-
work. Given our assumption of similar congestion dynamics, the
descriptor space should capture the adjacency or spatial proximity
between stations. Our approach leverages the concept of graph reg-
ularization [1] to refine descriptor spaces by ensuring that feature
representations of neighboring points on the graph are mapped
close to one another so the model assigns similar labels to neigh-
boring samples. To achieve this, we employ a neural graph machine
(NGM) [1], a type of semi-supervised learning that integrates neu-
ral models with graph regularization. We build the railroad graph
and define a graph regularization term based on it. This enables
the model to ensure that descriptors from adjacent stations share
similar representations if they exhibit the same congestion levels.
A conceptual illustration is provided in Fig. 2.

We leverage graph regularization to deal with the dispersion
issue discussed in Section 2. The model is based on graph theory,
where each node represents a station, and each edge indicates the
similarity between two stations. We define the weighted difference
between two descriptors, 𝒗𝑖 and 𝒗 𝑗 , as𝜔G (𝒗𝑖 , 𝒗 𝑗 ) = 1

2 | |𝒗𝑖−𝒗 𝑗 | |
2
2𝑊𝑖, 𝑗 ,



Congestion Forecast for Trains with Railroad-Graph-based
Semi-Supervised Learning using Sparse Passenger Reports SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

Bring the 
descriptor closer.

Station A: 

St
ati

on
 B

Station C

Railroad Network-Oriented Graph

FC
 + 

Softm
axFeature extractor

Network 

Descriptor space

W
<latexit sha1_base64="h4+Rwe1EnbR3Inb9CbyztkEHsbs="></latexit>

f✓
<latexit sha1_base64="v+Vj33ycnTeS4qatGWDSvltecnI="></latexit>

�✓
<latexit sha1_base64="jLG+HPPTRiK05Nrq8CC+w4x+xk0="></latexit>

ŷi
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Figure 2: Conceptual illustration of SURCONFORT.

where𝑊𝑖, 𝑗 denotes a railroad network-oriented adjacency matrix
reflecting the similarity between two stations 𝑠𝑖 and 𝑠 𝑗 of the de-
scriptors 𝒗𝑖 and 𝒗 𝑗 . This regularization aligns the descriptor space
within the model with the structure of the railroad network.

To define the similarity between two stations,𝑊𝑖, 𝑗 , we account
for the heterogeneous properties of the railroad, as train congestion
dynamics can spread to adjacent stations due to the network’s track
connections. A simple strategy to incorporate this intuition into
𝑊𝑖, 𝑗 is to use a spatial proximity measure, such as cosine similarity
between the locations of two stations:𝑊𝑖, 𝑗 = cos(𝝈𝑖 ,𝝈 𝑗 ), where
𝝈𝑖 is the spatial embedding vector for station 𝑠𝑖 (e.g., latitude and
longitude), and cos(𝝈𝑖 ,𝝈 𝑗 ) =

𝝈𝑖 ·𝝈 𝑗

| |𝝈𝑖 | | | |𝝈 𝑗 | | . However, this approach
does not account for actual railroad connections or the direction
(up/down) of travel at a station.

Therefore, we assume that the similarity between two stations
is determined by both their connections and spatial proximity. To
integrate this domain knowledge into graph regularization, we
define a railroad network-oriented adjacency matrix by applying a
graph cut method based on train up/down lines, as follows:

𝑊𝑖, 𝑗 =


1, if 𝑠𝑖 ∈ 𝜙 (𝑠 𝑗 ) or 𝑠 𝑗 ∈ 𝜙 (𝑠𝑖 )
1 − 𝑑/𝑑max, if 𝑠𝑖 ∉ 𝜙 (𝑠 𝑗 ), 𝑠 𝑗 ∉ 𝜙 (𝑠𝑖 ), 𝑑 < 𝑑max
0, otherwise

(1)

where 𝑑 is the distance between station 𝑠𝑖 and 𝑠 𝑗 , 𝑑max is a prede-
fined maxima of 𝑑 to ensure the sparseness of the affinity matrix,
and 𝜙 (𝑠) is the set of stations connecting to station 𝑠 .

To perform semi-supervised learning with the graph-regularized
objective, we train the model using NGM [1]. The loss function can
be defined as follows:

𝐿′G (𝑋𝐿, 𝑌𝐿 ;𝜽 ) =
𝑙∑︁

𝑖=1
𝑙𝑠 (𝑓𝜽 (𝒙𝑖 ), 𝑦𝑖 ) + 𝜁G

∑︁
(𝑖, 𝑗 ) ∈DLL

𝜔G (𝒗𝑖 , 𝒗 𝑗 )

+ 𝜁G
∑︁

(𝑖, 𝑗 ) ∈DLU

𝜔G (𝒗𝑖 , 𝒗 𝑗 ) + 𝜁G
∑︁

(𝑖, 𝑗 ) ∈DUU

𝜔G (𝒗𝑖 , 𝒗 𝑗 ) (2)

where 𝑙𝑠 (·, ·) is the sample-wise loss function (e.g., cross-entropy
loss), 𝜁G is a hyperparameter controlling the strength of the graph
regularization, and DLL, DLU, and DUU are sets of pairs of labeled-
labeled, labeled-unlabeled, and unlabeled-unlabeled samples, re-
spectively.

4 EXPERIMENTS
4.1 Experimental Settings
Datasets and Experimental Setups. We evaluated the models
using a dataset of actual user-submitted congestion posts, collected
via the transit search engine provided by LY Corporation. The
dataset consists of six months’ worth of records from November
1st, 2020, to May 20th, 2021. Each post was made after a route search
was done and while trains were running on that route. Each record
contains the last departure station, the date and time of posting, and
an anonymized user ID, whichwas deleted in the data preprocessing.
We aggregated the raw posts from each station and date and time
segment to calculate the average degree of congestion. We did not
use any personally identifiable information in this experiment.

We selected the JR Yamanote line for our experiments, one of
Tokyo’s busiest lines with 31.81 million passengers weekly, high-
lighting the importance of congestion forecasting. The proposed
method uses no regional parameters, making it applicable to other
areas or lines. We treated one day as 24 hours, dividing it into 144
time segments (10 minutes each). Data from 1:20 A.M. to 4:30 A.M.,
during out-of-service hours, were excluded from model training
and testing. The preprocessed dataset contained 2,034,779 samples,
including 10,373 labeled and 2,024,406 unlabeled data points. We
varied the labeled training data by 10%, 25%, 50%, 75%, and 100%
of the 10,373 labeled samples to assess model robustness when
labeled data are sparse. Performance was evaluated using 5-fold
cross-validation, with four subsets for training and one for testing.

Model Setting. For the context denoted by 𝒄𝑑 , we used day-of-
the-week and holiday features. The day-of-the-week feature was
a seven-dimensional vector, and the holiday feature was a two-
dimensional vector, both one-hot encoded. We concatenated these
vectors as 𝒄𝑑⊤ = [𝒄 (1)

𝑑

⊤
, 𝒄 (2)
𝑑

⊤
] ∈ R9. For hyperparameters, we set

𝛿 = 0.9, 𝑘 = 50, and 𝛾 = 3, following [3]. For the graph regulariza-
tion term, we used 𝜁G = 0.7 in the evaluation (Section 4.2.1).

Comparison Methods. We compare SURCONFORT with the fol-
lowing baselines: (1) Random, which randomly predicts the labels;
(2)MODE, which returns the most frequent labels from the training
data for the same day and time. If no such data exists, it randomly
selects a label; (3) SNN, a simple neural network trained in a fully-
supervised manner. The model consists of four fully connected
layers with ReLU activation for the first three layers and Softmax
for the final layer. The output dimensions of the layers are 128, 256,
128, and 4, respectively. Batch normalization layers were added
before each fully connected layer, except the first one; (4) LP (Label
Propagation) [11] and (5) LS (Label Spreading) [10], pioneering
methods in graph-based semi-supervised learning, which perform
label induction using the "natural graph," where the similarity be-
tween two samples is defined by the L2 distance in the input space;
(6) LP-DSSL [3], a state-of-the-art method for graph-based semi-
supervised learning, which uses the descriptor-based graph. All
models were optimized using Adam [5] with a learning rate 0.0001.

4.2 Experimental Results
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Table 1: Performance comparison for railroad congestion pre-
diction. The second column lists learning protocols: "stats."
refers to statistical methods, while SL and SSL indicate su-
pervised and semi-supervised learning, respectively.

Ratio of labeled data (%)

Model Protocol Graph 10% 25% 50% 75% 100%

Random - - 24.60 25.05 25.81 24.34 25.46
MODE stats. - 28.03 31.66 37.34 41.42 44.61
SNN SL - 54.94 56.15 56.23 57.42 58.75
LP [11] SSL natural 51.99 52.92 54.42 56.01 56.84
LS [10] SSL natural 51.99 52.92 54.42 56.02 56.83
LP-DSSL [3] SSL descriptor 49.38 52.97 55.35 57.10 58.88

SURCONFORT SSL rail 56.76 58.08 59.41 60.52 60.35

4.2.1 Performance Comparison. The experimental results are pre-
sented in Table 1, using classification accuracy as the evaluationmet-
ric. SURCONFORT outperformed all other graph-based approaches
across all percentages of labeled data.

We observed a decline in prediction performance for all models
as the amount of labeled data decreased, highlighting the severe
impact of label sparsity in UGC data on prediction accuracy. Despite
this, the proposed method successfully minimized performance loss.
Specifically, SURCONFORT improved forecasting performance by
9.2% compared to LP and LS, 14.9% compared to LP-DSSL, and
3.3% compared to SNN when trained on just 10% of the data. No-
tably, it achieved the highest accuracy across all rounds of 5-fold
cross-validation, confirming the significance of the improvement.
Conversely, LP-DSSL performed the worst among machine learning
methods, excluding Random and MODE, with 10% labeled data, but
outperformed LP, LS, and SNN when all data was labeled. This sug-
gests LP-DSSL struggles when labeled data is very sparse. Overall,
these results indicate that SURCONFORT is highly effective for
predicting train congestion, even with limited labeled data.

Table 2: Performance comparison for ablation study. SSL
stands for semi-supervised learning.

Ratio of labeled data (%)

Model SSL railroad graph 10% 25% 50% 75% 100%

SURCONFORT ✓ ✓ 56.76 58.08 59.41 60.52 60.35
NGM [1] ✓ - 55.96 57.69 58.67 59.49 60.09
SNN - - 54.94 56.15 56.23 57.42 58.75

4.2.2 Ablation Study. SURCONFORT is defined by (1) the use of
SSL and (2) the inclusion of the railroad graph, as explained in
Section 3. To evaluate the impact of these components, wemeasured
forecasting performance using two SURCONFORT variants: (1)
without the railroad graph, which aligns with the original NGM [1]
trained on a natural graph, and (2) without both SSL and the railroad
graph, which corresponds to SNN.

As shown in Table 2, the adoption of SSL and the railroad graph
significantly enhanced performance. SURCONFORT outperformed
SNN by up to 3.3% (without both SSL and the railroad graph) and
NGM by up to 1.7% (without the railroad graph). These findings
demonstrate the effectiveness of combining SSL and the railroad
graph in the proposed method.

5 DISCUSSION
As highlighted in Section 4.2.1, LP-DSSL, which uses label propaga-
tion andmodel retraining based on SNN, underperformed compared
to SURCONFORT, especially with sparse label data. This is due to
the learned descriptor space having a poor intra-class distribution,
which hinders effective pseudo-labeling.

In the findings of the ablation study presented in Table 2 of Sec-
tion 4.2.2, we saw a progressive improvement in performance from
SNN to NGM, and then SURCONFORT. These results highlight the
benefits of both semi-supervised learning and graph regularization,
particularly by incorporating station adjacency knowledge.

Although the performance gap between NGM and SURCON-
FORT is small, it can be explained. NGM, regularized by a natural
graph using L2 similarities of input vectors (with station one-hot
encodings as edges), is partially regularized by station proximity.
In this sense, NGM is a variant of SURCONFORT, which explains
its comparable performance.

6 CONCLUSION
We introduced SURCONFORT, a novel approach for forecasting rail
congestion by utilizing passenger-submitted congestion reports.
To address the challenge of sparse labels, we designed a railway
network-oriented graph and applied it to semi-supervised regular-
ization, leveraging data from nearby stations. Experimental results
with real-world data demonstrated the effectiveness of SURCON-
FORT, showing a 14.9% improvement in forecasting performance
compared to state-of-the-art graph-based semi-supervised meth-
ods under label sparsity. Future work will address the subjectivity
in passenger reports by integrating data selection techniques for
crowdsourcing. Additionally, factors like platform distance and al-
ternative transport availability will be considered to enhance the
robustness of the railroad graph, incorporating this information
into the proximity metric.
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