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Exploring Passive Activity Recognition using Multi-shot
UWB CIRs
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Abstract: As a promising device-free solution, wireless sensing techniques have been applied to various applications
while addressing privacy concerns associated with traditional computer vision-based methods. There has been limited
research focusing on the use of UWB CIR for activity recognition and showing improved performance over Wi-Fi CSI.
However, previous studies using one-shot CIR cannot correctly capture the variations inherent in dynamic activities.
This research proposes a device-free activity recognition approach by utilizing multi-shot CIRs, consisting of several
CIRs arranged in a time series, in order to cover the transition of activities. And three variants of wavelet denoising
across various dimensions are introduced to remove noise on signal. Experiments were conducted with horizontal and
vertical device settings to test the sensing performance in different scenarios. The results were also compared with
Wi-Fi CSI at the same frequency to benchmark its effectiveness.
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1. Introduction
Human Activity Recognition (HAR) plays a pivotal role in the

development of intelligent systems, with applications spanning
from healthcare monitoring to smart home automation. Tradi-
tionally, HAR research has been bifurcated into sensor-based and
vision-based methodologies. Sensor-based approaches, while
precise, often suffer from the inconvenience of requiring users to
wear devices continuously. Vision-based methods, on the other
hand, are impeded by environmental variables such as lighting
conditions and physical obstructions, and significantly, they raise
serious privacy concerns due to their intrusive nature [1].

In light of these limitations, wireless sensing techniques have
emerged as a promising device-free alternative, garnering atten-
tion for their ability to circumvent the privacy issues inherent in
vision-based systems without necessitating the use of wearable
sensors. Among these, RF-based methods have demonstrated sat-
isfactory performance in indoor localization and HAR, and meth-
ods based on Wi-Fi Received Signal Strength Indicator (RSSI) or
Channel State Information (CSI), when coupled with advanced
deep learning techniques, also showed promising results in indi-
vidual behaviors recognition [2–4].

More recently, the focus has shifted towards leveraging Ultra-
wideband (UWB) technology for HAR, driven by its growing
popularity in smart home automation and indoor localization ser-
vices [5]. UWB technology, characterized by its transmission
of signals across a bandwidth exceeding 500MHz using minimal
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energy, allows for the conveyance of substantial signal energy
without causing interference with existing narrowband and carrier
wave transmissions within the same frequency band. The incor-
poration of UWB beacons in consumer devices, such as iPhones,
heralds widespread application possibilities.

There has been limited research focusing on the use of UWB
Channel Impulse response(CIR) for activity recognition. Exist-
ing studies have indicated that UWB CIR can outperform Wi-
Fi CSI in activity recognition tasks by analyzing the time-series
data from CIR to discern human behaviors through multi-path ef-
fects [6]. However, these studies primarily utilized a one-shot
CIR approach, which fails to adequately capture the dynamic na-
ture of human activities due to the brief duration of each CIR
snapshot. This recognition gap underscores the necessity for a
multi-shot CIR approach, which employs a series of CIR snap-
shots over time to comprehensively capture the evolving nature
of activities.

This research is dedicated to exploring a passive activity recog-
nition system that employs multi-shot UWB CIRs in order to
extract enhanced information about the CIR variations resulting
from different activities. Additionally, our system aims to to mit-
igate the noise introduced by hardware and environmental fac-
tors in the CIRs data. To achieve this, we employ calibration
procedures along with wavelet denoising techniques. The pre-
processed CIRs are subsequently used as input for a neural net-
work designed to accurately recognize various activities.

The contributions of this article include the following:
• We propose a device-free activity recognition approach by

utilizing multi-shot CIRs to cover the transition of activities.
• Three types of wavelet denoising across various dimensions

are introduced to remove noise on signal.
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• We conduct the experiments to test the sensing performance
in the two typical application scenarios. The results demon-
strate the limitations of one-shot CIR and highlight the en-
hanced performance of multi-shot CIRs and various wavelet
denoising techniques. Further, we benchmark our approach
against Wi-Fi CSI at the same frequency to assess its effec-
tiveness.

Related work
Passive Activity recognition based on Wi-Fi

Passive activity recognition using Wi-Fi signals, particularly
through RSSI and CSI, has garnered significant interest in the re-
search community. RSSI-based methodologies, as explored by
Sigg et al., have proven capable of recognizing a range of ac-
tivities, gestures, and environmental contexts using signals cap-
tured by mobile phones [7]. Similarly, Gu et al. have introduced
an adaptable online activity recognition architecture that utilizes
a novel fusion algorithm and a classification tree to enhance the
differentiation of activities with closely related signal patterns [8].
Despite these advances, RSSI’s reliance on signal fingerprinting
struggles to achieve high accuracy due to the limited channel in-
formation it provides.

The advent of CSI at the physical layer has marked a turn-
ing point, offering finer granularity and thereby enabling more
successful applications in CSI-based HAR. Noteworthy among
these are the neural network framework proposed by Chen et al.,
which integrates bidirectional and attention mechanisms for Wi-
Fi CSI data processing [4], and the WiAct prototype by Yan et al.,
which employs an Adaptive Activity Cutting Algorithm (AACA)
to distinguish between active and inactive signal variances [9].
Sch”afer et al.’s use of the Nexmon tool to obtain comprehensive
HAR results further underscores the potential of CSI-based ap-
proaches, achieving performance on par with or surpassing other
machine learning-based studies [10].

Nonetheless, the effectiveness of these deep learning models
can be compromised by individual variances and environmental
dynamics, which may introduce intrinsic noise into the CSI data,
ultimately affecting performance [5].
Passive Activity recognition based on Ultra-Wideband Radios

UWB technology, known for its high temporal resolution and
broad frequency bandwidth, offers significant advantages for pas-
sive activity recognition due to its sensitivity to human-induced
signal variations and low power consumption. UWB has been ef-
fectively applied to a range of activities, from hand gesture recog-
nition to basic activity classification, demonstrating superior per-
formance [11].

A key focus within UWB-based HAR is the use of Channel
Impulse Response, which, akin to Wi-Fi CSI, captures the multi-
path propagation of signals in indoor environments. Sharma et
al.’s exploration into the use of UWB CIR for activity recognition
has shown high accuracy in identifying basic activities such as
standing, sitting, and lying [12]. Furthermore, Bocus et al. have
conducted an analysis comparing the classification performance
using high-resolution CIR from UWB modules against CSI data
extracted from Wi-Fi, illustrating the distinct advantages of UWB
in certain scenarios [6].

However, challenges remain, particularly regarding the tempo-
ral limitations of CIR data. The inherently short duration of CIR
captures can hinder the accurate reflection of all human-induced
signal reflections, leading to potential misrecognitions in activi-
ties with subtle differences, such as jogging versus walking in our
experiments.

2. Activity recognition using UWB CIR
2.1 Channel Impulse Response

The Channel Impulse Response of UWB represents encap-
sulates the channel characteristics of a transmitted signal. The
widely accepted UWB channel model, inspired by the Saleh-
Valenzuela model, describes the signal as comprising multiple
path components grouped into L clusters, each containing K

paths [13]. The model is mathematically represented as follows:

h(t) =

L∑
l=0

K∑
k=0

αk,le
jθk,lδ(t− Tl − τk,l) (1)

Here, αk,l, θk,l, and τk,l represent the amplitude, phase shift,
and time delay of the kth path in the lth cluster, respectively. T l
signifies the arrival time or the delay of the lth cluster, and δ(·) is
the Dirac delta function.

In scenarios like non-line-of-sight indoor office or industrial
environments, characterized by a dense, continuous arrival of
multipath components, a simplified single-cluster model can be
adopted:

h(t) =

K∑
k=0

αke
jθkδ(t− τk) (2)

This CIR adequately captures the multipath propagation effect,
allowing for the detection of signal variations caused by human
movement. By analyzing these variations, one can infer the type
of activity being performed.

2.2 Limitations of one-shot CIR
Prior research on passive activity recognition leveraging CIR

has shown promising results, utilizing one-shot CIR measure-
ments combined with machine learning and deep learning tech-
niques to recognize activities [6, 12].

The high temporal resolution of CIR is capable of detecting
minute movements. However, the brevity of CIR measurements
(approximately 1ns) limits their ability to encompass entire ac-
tivities, which may last several seconds. For instance, activities
such as walking or standing up cannot be fully captured in such
a short snapshot, leading to inaccuracies in activity recognition
when movements share similar postures but differ in speed or pat-
tern.

Moreover, the equation for the UWB system can be expanded
to include the received signal, represented as follows:

r(t) =
K∑

k=0

αke
jθks(t− τk) + n(t) (3)

Here, s(·) denotes the transmitted signal, and n(·) represents
additive Gaussian noise. Merely selecting specific portions of the
CIR does not inherently eliminate Gaussian noise, necessitating
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Fig. 1 System Overview, consisting of extracting CIRs from UWB devices, pre-processing on multi-shot
CIRs and recognition.

the application of denoising techniques.
To address these limitations, we introduce a multi-shot CIR

approach complemented by pre-processing techniques, which we
will explore in the subsequent chapter. This method aims to en-
hance the accuracy and reliability of activity recognition by over-
coming the constraints posed by one-shot CIR measurements.

3. Proposed method: Multi-shot UWB CIRs
based activity recognition

3.1 Overview
Our method utilizes multi-shot UWB CIRs, comprising several

CIRs arranged in a time series to span the entire activity period.
Due to the redundancy and noise inherent in the raw signal data,
we implement a two-step preprocessing procedure that includes
calibration and wavelet denoising.

In the calibration step, we calibrate each CIR by first path index
and normalize it using the Preamble Accumulation Count (PAC)
value, which is calculated by the built-in chip. For denoising,
we explore three types of wavelet denoising techniques applied
across various dimensions to eliminate Gaussian noise originat-
ing from the environment or the devices themselves.

Following preprocessing, we employ an Attention-Based Long
Short-Term Memory (ABLSTM) network as the recognizer to
classify activities. An overview of our proposed method is il-
lustrated in Fig.1.

3.2 Multi-shot CIRs
In this study, we direct our attention to analyzing the amplitude

of CIRs. The multi-shot CIRs matrix at time t, denoted byM (t),
is formulated as follows:

M (t) =


xt−iT

...
xt−T

xt

 (4)

In the above equation, T signifies the interval between succes-
sive CIR measurements, while i represent the count of measure-
ments taken before the current measurement, respectively. The
term xt denotes the amplitude row vector of a single CIR mea-
surement at time t, which is defined as:

xt = [|r(t)| , |r(t+ 1)| , ... |r(t+N − 1)|] (5)

where N is the length of one-shot CIR sequence and equal to
1016 in our devices.

3.3 System mechanism
3.3.1 Calibration

As illustrated in Fig.2(a), the raw CIRs data exhibits redun-
dancy along with significant noise, attributed to environmental
factors and device output. The noise is predominantly Gaus-
sian and affects both the initial and final segments of the CIR
sequence.

To address this issue, we leverage the estimated first index
value computed by the device firmware to discard the noisy seg-
ments, concentrating our analysis on the fluctuating segments at-
tributable to the multi-path effect. Consequently, the refined am-
plitude vector for a single CIR measurement is represented as:

x′
t = [|r(t+ l − 3)| , ... |r(t+ l)| , ... |r(t+ l + 124)|] (6)

where the l indicates the first path index in the current shot of
CIR measurement, and we empirically select a subset of 128 sam-
ples, including three samples preceding and 125 samples follow-
ing the first path index, to capture the relevant signal information.
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Fig. 2 Calibration of Multi-Shot CIRs. CIR Sequence represents a single
CIR measurement, measured in nanoseconds (ns), while Time de-
notes the interval between consecutive CIRs.

Furthermore, we employ the Preamble Accumulation Count
(PAC) value for normalize purposes. The PAC value, which re-
flects the accumulated preamble symbols, correlates with the re-
ceived signal’s quality [14]. Consequently, the CIR’s amplitude
is adjusted based on the PAC value to mitigate the effects of the
transmission environment.

After these two steps, the calibrated multi-shot CIRs matrix is
represented as:

M ′(t) =


x′
t−iT /pi

...
x′
t−T /p1

x′
t/p0

 (7)

Here, the pi denotes the PAC value associated with the ith CIR
measurement that precedes the CIR at time t. The calibrated sig-
nal is shown in Fig.2(b).
3.3.2 Wavelet denoising

In the calibration process, we select the vicinity segment of
the estimated first path index as feature. However, addressing
the issue of in-band noise removal is still critical. By observ-
ing time-oriented overlapped CIR curves, as illustrated in Fig.3,
Gaussian noise persists within the CIRs even in empty environ-
ments. Considering the significant challenge posed by noise from
environmental reflections to activity recognition, we have chosen
Wavelet denoising as our method for removing Gaussian noise in
the CIRs.
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Fig. 3 Overlapped figure of calibrated multi-shot CIRs across the Time axis.

Wavelet-based denoising is a renowned preprocessing method
across various fields. For instance, in Wi-Fi gesture recognition
researches [15, 16], this technique has been instrumental in fil-
tering out high-frequency noise while preserving the critical de-
tails of CSI patterns necessary for distinguishing similar gestures.
Similarly, in UWB positioning systems [17,18], it has been effec-
tively utilized to mitigate the effects of personnel motion noise,
thereby enhancing positioning accuracy and motion localization.
Discrete Wavelet Transform

This method utilizes the Discrete Wavelet Transform (DWT)
to transform the signal into the time-frequency domain, with-
out assuming any prior knowledge about the signal’s original na-
ture. Offering a significant advantage over the Short-Time Fourier
Transform (STFT), the DWT facilitates variable resolution be-
tween the time and frequency domains, providing a multi-scale
analysis of the signal [19].

The DWT performs an iterative decomposition, breaking down
the signal f(n) into two components: an approximation coeffi-
cients component and a detail coefficients component. This de-
composition process is then repeated on the approximation com-
ponent to extract finer details from the signal. The process is
applied iteratively in several steps or levels, denoted by j. The
approximation and detail coefficients at different levels are calcu-
lated using a series of scaling function coefficients ϕj,k(n) and
wavelet function coefficients ψj,k(n) according to the following
equations:

cj,k =< f(n),ϕj,k(n) >=
∑
n∈Z

f(n)ϕj,k(n) (8)

dj,k =< f(n),ψj,k(n) >=
∑
n∈Z

f(n)ψj,k(n) (9)

Here, the < · > denotes the dot product operation. Through
multiple decompositions, we ultimately obtain a series of decom-
position coefficients at the coarsest level J . As a result, the orig-
inal signal can be expressed by:

f(n) =
∑
k∈Z

cj,k ϕJ,k(n) +

J∑
j=1

∑
k∈Z

dj,k ψj,k(n) (10)
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Thresholding and Reconstruction
Thresholding is then applied to the wavelet detail coefficients

to remove their noisy component. The threshold rule is based
on the an empirical Bayes approach to the estimation of possibly
sparse sequences observed in Gaussian white noise [20]. Finally,
the signal is reconstructed by combining the coefficients of the
last approximation level with all thresholded details to get the de-
noised signal.
Variants of denoising

In our research, we explore three types of wavelet denoising
techniques to tackle noise across various dimensions effectively.
( 1 ) Seq-Oriented denoising: This approach is widely used to

eliminate in-band noise from individual CIR measurements.
We apply wavelet denoising to each calibrated CIR measure-
ment, i.e., the row vectors of M ′(t). This method is par-
ticularly effective in addressing noise inherent to the single
measurement.

( 2 ) Time-Oriented denoising: In this method, wavelet denoising
is applied to each index of CIR measurements, i.e., the col-
umn vectors of M ′(t), to mitigate Gaussian noise as afore-
mentioned in Fig.x. This noise may be attributed to environ-
mental factors or hardware limitations. Since the amplitude
variations in CIR caused by human interference are signif-
icantly larger than those caused by environmental or hard-
ware issues, this approach proves beneficial in preserving
the integrity of human-induced signal variations.

( 3 ) Seq-Time-Oriented denoising: This innovative approach uti-
lizes 2D wavelet denoising on the entire cluster of CIRs,
M ′(t), akin to denoising techniques used in computer vi-
sion. It is designed to remove noise along both the sequence
and time axes of CIR, offering a comprehensive solution to
noise reduction that considers the complex interplay between
temporal and sequential dimensions of the data.

3.3.3 ABLSTM
The ABLSTM framework is widely recognized for its appli-

cation in Wi-Fi CSI-based passive activity recognition [4]. This
neural network also excels in extracting time-series features from
each CIR frame, making it an ideal candidate for our comparison
with Wi-Fi CSI performance. As a result, it is integrated into our
system with minor modifications.

As depicted in Fig.4, our implementation leverages a Bidirec-
tional Long Short-Term Memory (BLSTM) network for feature
learning. Subsequently, an attention mechanism generates an at-
tention matrix, highlighting the significance of features and time
steps. Here, an element-wise multiplication is used to integrate
the learned features with the attention matrix, and we incorporate
a shortcut connection into the architecture to mitigate the degra-
dation problem [21]. The procedure concludes with a flatten layer
that transforms the feature matrix into a vector, which is then clas-
sified using a softmax layer to distinguish between different ac-
tivities.

4. Experiment
In this chapter, we delve into a comparative analysis of per-

formance across various activities, comparing with one-shot CIR
within two typical application scenarios. Additionally, we extend
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Fig. 4 The ABLSTM framework for multi-shot CIRs

our comparison between Wi-Fi CSI and UWB CIR to highlight
the advantages offered by UWB CIR.

4.1 Experiment settings
In our experiments, we utilized pairs of Decawave EVK1000

boards, which leverage the Two-Way Ranging (TWR) protocol
to provide accurate distance measurements in accordance with
the 802.15.4a standard. These boards were configured in Mode 3,
setting the DW1000 chip to operate with a bandwidth of 500MHz,
a carrier frequency of 4.0GHz, a Pulse Repetition Frequency
(PRF) of 64MHz, a preamble length of 1024 bits, and a data rate
of 110kbps [22]. With this configuration, CIRs comprising 1016
samples were extracted by interfacing with a laptop.

For CSI data collection, we employed the Raspberry Pi
equipped with the Nexmon CSI toolkit [23]. The Wi-Fi configu-
ration was set to a bandwidth of 40MHz, encompassing 128 sub-
carriers. The transmission frequency for both CIR and CSI data
was standardized at 3Hz.

4.2 Experiment results
4.2.1 Horizontal device setting

The implementation of horizontal device placement has been
a prevalent methodology in prior research, particularly in scenar-
ios where device alignment at specific levels captures abundant
human reflections effectively. In our study, devices were posi-
tioned at a height of 0.7m and spaced 1.8m apart. This setup was
designed to emulate a typical environment conducive to activity
recognition research. Within this arrangement, participants were
instructed to perform a series of activities at different locations,
as depicted in Fig.5.

As Fig.6 demonstrates, distinguishing between jogging and
walking activities using one-shot CIR is challenging, primarily
due to the similarity in movement. Given that each CIR measure-
ment encapsulates data from a mere 1ms window, lacking sequen-
tial frame variation knowledge complicates the differentiation of
activities with similar postures. Therefore, it becomes natural to
consider multi-shot CIRs to enhance recognition accuracy.

Utilizing multi-shot CIRs, notably with the incorporation of
wavelet denoising techniques, significantly improves recognition
performance. As evidenced in Table 1, the results of 10-fold vali-
dation, the accuracy of raw CIRs averaged at 92.6%, outperform-
ing the one-shot approach. Moreover, Time-Oriented and Seq-
Time-Oriented denoising methods contributed approximately a
2% increase in accuracy, contrasting with the Seq-Oriented ap-
proach. This discrepancy underscores the minimal noise im-
pact in single CIR measurements within horizontal setups, where
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Fig. 5 Activities in horizontal scenario
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Fig. 6 Recognition result in horizontal scenario with one-shot CIR

Table 1 Results of wavelet denoising with multi-shot CIRs in the horizontal
setting

Method Top1 Accuracy
Calibrated Data 92.6%± 4.9%
Seq-Oriented denoising 91.7%± 3.6%
Time-Oriented denoising 94.1%± 3.4%
Seq-Time-Oriented denoising 94.9%± 2.2 %

human-induced multipath effects are prevalent [6].
4.2.2 Vertical device setting

Contrary to the horizontal arrangement, this setup involves
mounting the devices on the ceiling, at a height of 2.5m, as shown
in Fig.7, where human reflections are considerably reduced. This
deployment was selected to evaluate the impact of device posi-
tioning in scenarios characterized by varying degrees of reflec-
tions. We let the subject shake its shoulder under the device to

(a) No Activity (b) Shaking

Fig. 7 Vertical scenario
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Fig. 8 Recognition result in horizontal scenario with one-shot CIR

Table 2 Results of wavelet denoising with multi-shot CIRs in the vertical
setting

Method Top1 Accuracy
Calibrated Data 86.8%± 7.3%
Seq-Oriented denoising 89.6%± 5.5%
Time-Oriented denoising 93.9%± 3.7%
Seq-Time-Oriented denoising 94.1%± 3.9 %

detect the sensitivitiy of system.
Contrary to the horizontal arrangement, the vertical device ar-

rangement, entailing device placement on the ceiling at a 2.5m
height, significantly diminishes human reflections, as shown in
Fig.7. This setup was chosen to assess device positioning ef-
fects under varied reflection intensities. Subjects were asked to
perform shoulder shaking movements and other static posture be-
neath the device to evaluate system sensitivity in such configura-
tions.

Fig.8 indicates the difficulty of one-shot CIR in distinguish-
ing between shaking and standing activities. Nonetheless, Table
2 shows that the accuracy achieved in multi-shot CIR scenarios
was markedly higher, with wavelet denoising further enhancing
performance. This improvement of denoising is attributed to the
lower human reflection intensity, making it more susceptible to
environmental noise interference.

© 2024 Information Processing Society of Japan
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Table 3 Comparison between UWB CIR and Wi-FI CSI in the horizontal
setting

Signal Top1 Accuracy
UWB CIR 92.6%± 4.9%
Wi-Fi CSI 61.6%± 8.3%

4.2.3 Comparison with Wi-Fi CSI
Comparative analysis between Wi-Fi CSI and UWB CIR,

specifically without preprocessing in the horizontal scenario, un-
derscores a notable disparity in performance. According to Table
3, the effectiveness of Wi-Fi CSI significantly lags behind that of
UWB CIR. This performance gap is primarily attributed to the
inherent noise present in CSI data, which necessitates extensive
preprocessing efforts to mitigate. Additionally, synchronizing the
transmission frequency to that of CIR fails to address the low res-
olution of CSI data, thereby unable to replicate the high levels of
efficacy observed in previous researches.

5. Conclusion
In this study, we explored the potential of utilizing multi-shot

UWB CIRs for passive activity recognition without the need for
additional sensors. Our experimental results demonstrate the ef-
ficacy of our approach, particularly in distinguishing between ac-
tivities such as jogging and walking―a task that one-shot CIR
struggle with. Notably, our method achieved an accuracy rate ex-
ceeding 90% in both horizontal and vertical device deployment.
We observed a significant enhancement in performance through
the application of wavelet denoising, especially in vertical device
configurations where signal reflection is inherently lower com-
pared to horizontal setups.

Furthermore, we conducted a comparative analysis between
Wi-Fi CSI and UWB CIR, highlighting the superior capabilities
of CIR technology. However, it is important to acknowledge that
the comparative experiments with CSI were somewhat limited.
The constraints included maintaining the same transmission rate
as that of the CIR and the absence of pre-processing on the noisy
CSI data.

For the future work, we will focus on conducting more com-
prehensive experiments involving both Wi-Fi CSI and UWB CIR,
without the constraints of frequency limitations for Wi-Fi CSI.
This will include implementing full preprocessing measures to
ensure a more accurate assessment of Wi-Fi CSI’s potential and
a fairer comparison with UWB CIR. By exploring higher fre-
quencies, we aim to refine the clarity of CIRs’ reflection of dif-
ferent actions, thereby optimizing the system for real-time ac-
tivity recognition. Additionally, while wavelet denoising has
shown promise in improving performance in certain scenarios,
its effectiveness varies. Therefore, we plan to explore other pre-
processing and signal analysis techniques to further enhance per-
formance, particularly in environments where human reflections
predominantly affect CIRs data.
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