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Abstract— Driving behavior modeling is crucial in au-
tonomous driving systems for preventing traffic accidents.
Inverse reinforcement learning (IRL) allows autonomous agents
to learn complicated behaviors from expert demonstrations.
Similar to how humans learn by trial and error, failed demon-
strations can help an agent avoid failures. However, expert and
failed demonstrations generally have some common behaviors,
which could cause instability in an IRL model. To improve the
stability, this work proposes a novel method that introduces
time-series labeling for the optimization of IRL to help dis-
tinguish the behaviors in demonstrations. Experimental results
in a simulated driving environment show that the proposed
method converged faster than and outperformed other baseline
methods. The results also show consistency for various data
balances of the number of expert and failed demonstrations.

I. INTRODUCTION

Autonomous driving is a crucial technology for solving
social issues such as labor shortages in an aging society. The
intelligent systems of autonomous driving must be capable of
handling more complex scenarios in urban environments than
highways [2]. Thus, many functionalities such as traffic sign
recognition [17] and pedestrian trajectory prediction [12]
are necessary for urban environments. In addition to mod-
eling such surrounding traffic, it is important to model the
decision-making process of the drivers in order to follow
traffic signs and avoid pedestrians.

Driving behavior modeling (DBM) is a technique to model
the decision-making process of humans during driving [8].
In recent years, many works have reported that the Markov
decision process (MDP) is a powerful method to model driv-
ing behaviors [15]. In an MDP, a sequence of optimal driving
behaviors is obtained by maximizing the rewards. However,
designing the reward function of driving behaviors is non-
trivial owing to the complex nature of human behaviors in
various driving scenarios [14].

Inverse reinforcement learning (IRL) is a promising ap-
proach to the reward design issue. It provides a data-driven
solution where the reward functions are directly learned
from demonstration data. Many IRL methods have been
researched over the last 20 years, such as max margin
IRL [9], Bayesian IRL [11] and max entropy IRL [18].
Max entropy IRL is one of the most common frameworks
because it is a probabilistic model that can learn not only
optimal behaviors but also suboptimal behaviors. However,
traditional IRL methods imitate whatever is demonstrated in
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the data, so typically, only expert demonstrations are fed to
an IRL framework.

Humans generally learn through trial and error. When
analogizing such human nature to machine learning methods,
it follows that failed demonstrations are equally as important
as expert demonstrations. To improve learning, a new frame-
work that can not only imitate expert demonstrations but also
exploit failed demonstrations is necessary. The advantage
of such a framework would be the improved capability of
distinguishing the failed behaviors from the expert behav-
iors based on the learned reward function. In this work,
such a framework is called IRL from failed demonstrations
(IRLFD). Some successful work based on such an IRLFD
framework has been conducted, such as IRL with failures
(IRLF) [13] and Bayesian IRL with failures (BIRLF) [16].

However, expert and failed demonstrations generally have
some common behaviors that cause instability in the IRL
model [5]. Such a problem is also called the behavior
overlapping issue and usually occurs due to improper demon-
stration labeling. For example, we usually directly label a
demonstration as expert or failed depending on whether any
failed behaviors exist in the demonstration. However, apart
from the failed behaviors, other behaviors in such demonstra-
tions are sometimes almost identical to the expert behaviors
in expert demonstrations. For such common behaviors, the
IRLFD method will imitate it if it is taken from an expert
demonstration; in contrast, the behavior will not be imitated
if it is taken from a failed demonstration. Such a conflict
would cause instability in the training process of an IRLFD
method.

In this work, we introduce a time-series labeling-based
solution to address the behavior overlapping issue and im-
prove the stability of the training process. In doing so, we
address a key difficulty in the existing IRLFD framework: the
problem is over-constrained as it does not imitate anything
from the failed demonstration even if some behaviors are
actually good. With the proposed time-series labeling, we
relax the constraint so that it will not imitate the failed
behaviors but also imitate the expert behavior from a failed
demonstration. In addition, we name the proposed framework
as stable IRLFD (SIRLFD).

Our contributions are summarized as follows:
• We propose a novel time-series labeling-based IRLFD

framework to handle the behavior overlapping issue.
This guarantees a behavior-conflict-free training process
to improve stability.

• We construct a stable and accurate driving behavior
prediction method based on the IRLFD framework.



The predicted driving behaviors are generated using a
modified graph model for MDP involving time-series
labeling.

• We demonstrate the superiority of the proposed SIRLFD
method over some conventional approaches through
some driving scenarios in a simulated driving environ-
ment.

II. RELATED WORK

A. IRL for driving behavior modeling

Driving behaviors are typically difficult to model using
any handcrafted reward function, which makes IRL a pow-
erful solution to modeling driving behaviors by learning
rewards from demonstrations. Various existing works have
been presented on using IRL-based methods to model driving
behaviors, such as avoiding obstacles [4] and proper velocity
control under various weather conditions [10]. However,
these methods only utilize expert demonstrations; hence,
although those trained driving behavior models can imitate
expert behaviors to drive safely, the models cannot intention-
ally avoid dangers.

B. IRL from failed demonstrations

Failed demonstrations are necessary to avoid dangers. IRL
algorithms that also learn from failed demonstrations have
already shown notable performance improvement over those
that only learn from expert demonstrations [5], [6], [13],
[16]. However, the performance of these methods drops
significantly with a large number of overlapping behaviors
between expert and failed demonstrations.

A common approach in these methods is to maximize the
similarity of the generated behaviors to the expert demon-
strations. IRLF [13] presents a visiting frequency-based sim-
ilarity measurement and optimizes such similarity using two
gradients in the training process. One gradient aims to imitate
the expert demonstrations, whereas another gradient aims
to avoid imitating the failed demonstrations. However, with
many overlapped behaviors, these two gradients would con-
flict with each other and result in a significant performance
drop. BIRLF [16] introduces a halfspace-induced potential
measurement instead of a visiting frequency-based measure-
ment, but the overlapping issue still exists. GPIRL [6] utilizes
Gaussian kernel-based measurement, but the performance
highly depends on the kernel design, where the design effort
is not trivial. Therefore, the behavior overlapping issue must
be solved to improve the stability of the gradient-based
training process.

III. FORMULATION OF IRLFD

This section introduces the base of our proposed method.
Specifically, we first describe the problem setting of IRL
based on the max entropy IRL framework [18] and a solution
based on the Lagrange multiplier method. We then introduce
the optimization problem of IRLFD which is extended from
IRL with an additional constraint. Note that we concentrate
on the max entropy IRL method because it is a probabilistic
model and deals with suboptimality.

A. Problem setting of IRL

We define the discrete state space S and the discrete action
space A. When a discrete state st ∈ S and an action at ∈ A
are given, the agent moves to the next state with a transition
probability P : S ×A×S → [0, 1] with p(st+1|st, at). Note
that the transition is Markovian in that the next state only
depends on the current state and action. During the transition,
the agent obtains an immediate reward R : S ×A → R with
R(st, at) at the t-th timestep. We aim to obtain a policy
π : S ×A → [0, 1] with π(st, at) = p(at|st) that maximizes
the expected future reward. This expected future reward can
be expressed as the reward value of being in a particular state
and following a given policy over the finite time horizon
{1, . . . , h},

V π(s) = Eπ

[
h∑

t=1

R(st, at)

∣∣∣∣∣s1 = s

]
. (1)

(1) is also called a state-value function for policy π. In
addition, a behavior is represented as a pair of states and
actions. A demonstration consists of a sequence of behaviors;
consequently, it is represented as a sequence of state-action
pairs, such as τi =

〈(
s
(τi)
1 , a

(τi)
1

)
, . . . ,

(
s
(τi)
hi

, a
(τi)
hi

)〉
,

where τi indicates the i−th demonstration in the dataset and
hi indicates the time horizon of a demonstration.

The objective of IRL is to learn the reward function given
demonstrations of behaviors in the environment, D. The op-
timal behaviors are predicted based on an immediate reward
and an expected future reward. Specifically, to learn from
the demonstrations, the learned rewards should be as close
to the rewards from demonstrations as possible. We denote
Es∼D [V πD (s)] as a marginal estimation of the state-value
function over the states sampled from trajectories. Thus, the
optimization problem of a max entropy IRL framework can
be expressed as

max
π

H(Ah||Sh)

s.t. Es∼P

[
V π(s)

]
= Es∼D

[
V πD (s)

]
,

(2)

where H(Ah||Sh) indicates the causal entropy, which is
a conditional entropy of the action sequence Ah causally
conditioned on the state sequence Sh. With the Markovian
transition probability, the causal entropy is formed as

H(Ah||Sh) = Ep(Sh,Ah) [− log p(at|st)]

= −
∑

st∈Sh

∑
at∈Ah

p(st, at) log p(at|st),
(3)

where,

p(st, at) = p(st−1, at−1)p(st|st−1, at−1)p(at|st). (4)

Note that p(at|st) represents the policy π, and πD and π are
the expert policy and learned policy, respectively [1].

The Lagrange multiplier method is a common way to
solve such constrained optimization problems shown in (2).
Let the constraint be a linear relationship with the Lagrange



multiplier w. Then, the Lagrangian function gives

L(π,w) = H(Ah||Sh)+w (Es∼P [V π(s)]− Es∼D [V πD (s)]) .
(5)

There are two variables to be optimized with the Lagrangian
function shown in (5): the policy π and the Lagrangian
multiplier w.

First, the policy is optimized through a probabilistic infer-
ence process. In this work, we focus on the max entropy
IRL method because it is a probabilistic model. Such a
probabilistic model can be solved as a probabilistic inference
regarding the policy search process [7]. This concept is
similar to dynamic programming. We first compute backward
messages regarding the reward function from t′ to h:

βt(st, at) = exp

(
h∑

t=t′

R(st, at)p(st+1|st, at)

)
. (6)

We also require messages denoting the state-only probability
by integrating out the action:

βt(st) =
∑
at∈A

βt(st, at)p(at|st). (7)

In dynamic programming, the recursive message passing for
computing βt(st, at) proceeds from the last timestep t = h
and backward through time to t = 1 with the following form:

βt(st, at) =
∑

st+1∈S
βt+1(st+1)p(st+1|st, at) exp

(
R(st, at)

)
.

(8)
We then introduce such backward messages in the log space,
and such log-space messages correspond to the state-action
and state value functions:

Q(st, at) = log βt(st, at),

V (st) = log βt(st).
(9)

Finally, we can obtain the policy as

π(st, at) = exp
(
Q(st, at)− V (st)

)
. (10)

This proves that the optimal policy can be recovered with a
probabilistic inference process.

Once the optimal policy π with a given reward function
is computed, the Lagrangian multiplier w is updated via
gradient descent by noting that

∇wL(π,w) = Es∼P

[
V π(s)

]
− Es∼D

[
V πD (s)

]
, (11)

where the learned reward Es∼P

[
V π(s)

]
is computed by

rolling out policy π. The optimization process terminates
once the Lagrangian multiplier w converges to the optimal
solution.

B. Optimization problem of IRLFD

IRLFD learns the reward function with two types of
demonstrations, failed F and expert D demonstrations. Sim-
ilar to the IRL framework, IRLFD aims to minimize the
difference between the learned reward and the reward from
the expert demonstrations. Additionally, IRLFD needs to

maximize the difference between the learned reward and the
reward from failed demonstrations to learn from these failed
demonstrations by not imitating them. Consequently, an ad-
ditional constraint is introduced to the optimization problem
with a variable z ∈ R to maximize such dissimilarities to
the failed demonstrations:

max
π,z,θ

H(Ah||Sh) + θz − λ

2
||θ||2

s.t. Es∼P

[
V π(s)

]
= Es∼D

[
V πD (s)

]
Es∼P

[
V π(s)

]
− Es∼F

[
V πF (s)

]
= z,

(12)

where πD and πF indicate the expert and failed policies, re-
spectively. Note that a parameter θ is introduced to guarantee
a convex problem, and λ is a constant.

However, this newly added constraint makes the optimiza-
tion problem ill-posed due to behavior overlapping issues in
the demonstrations. Because behaviors are represented as a
pair of states and actions, behavior overlapping issues can
also be regarded as the overlapping of state-action pairs.
During the training process, the agent optimizes the IRLFD
problem from many demonstrations. As a result of this
optimization, we can obtain a maximized reward function
R(st, at). Note that we are dealing with a reward function
over the action and state space instead of a reward value of an
entire demonstration Rτ . However, when feeding the expert
and failed demonstrations, the entire demonstration is labeled
as lτ = lD if it is an expert demonstration and lτ = lF

if it is a failed demonstration. Such whole-demonstration
labeling ignores the fact that not all state-action pairs in failed
demonstrations exhibit failed behaviors.

For example, let SD and AD represent the state and action
space of expert behaviors, and let SF and AF indicate the
state and action space of failed behaviors. Note that the
whole space consists of an expert space and a failed space.
For example, when considering the state space, we have
SD ∪ SF = S and SD ∩ SF = ∅; as well as the action
space. For any state-action pair in failed demonstrations,
sometimes (s

(τF )
ti , a

(τF )
ti ) ∈ (SF ,AF ) when the behavior

fails the task; on the other hand, sometimes (s
(τF )
tj , a

(τF )
tj ) ∈

(SD,AD) when it shows almost the same behavior as in
the expert demonstrations. Therefore, whole-demonstration
labeling can introduce a conflict on whether to imitate the
same behavior in different demonstrations.

When solving this optimization problem with the Lagrange
multiplier method, we have two Lagrange multipliers for two
constraints. wD and wF represent the weight parameters
for the similarities of expert and failed demonstrations,
respectively. The Lagrangian function becomes

L(π, z, θ, wD, wF ) = H(Ah||Sh) + θz − λ

2
||θ||2

+ wD
(
Es∼P

[
V π(s)

]
− Es∼D

[
V πD (s)

])
+ wF

(
Es∼P

[
V π(s)

]
− Es∼F

[
V πF (s)

]
− z
)
.

(13)

Now, we differentiate the Lagrangian function regarding z



and θ:
∇θL(π, z, θ, w

D, wF ) = z − λθ,

∇zL(π, z, θ, w
D, wF ) = θ − wF .

(14)

Setting both derivatives to zero yields

z = λθ,

θ = wF .
(15)

Then, (15) is plugged back into the Lagrangian function.
As a result, the previous Lagrangian multiplier update equa-
tion shown in (11) becomes

∇wDL(π,wD, wF ) =

Es∼P

[
V π(s)

]
− Es∼D

[
V πD (s)

]
,

∇wFL(π,wD, wF ) =

Es∼P

[
V π(s)

]
− Es∼F

[
V πF (s)

]
− λwF ,

(16)

where the two Lagrangian multipliers wD and wF are
updated via gradient descent. During the gradient-based
training process, the expert gradient aims to imitate the expert
demonstrations, and the failed gradient seeks not to imitate
failed demonstrations. However, such overlapped state-action
pairs may cause a conflict between the two gradients during
training and reduce the performance significantly.

IV. STABLE IRLFD

This work aims to overcome the state-action overlapping
issue by introducing a novel well-posed constraint to the
IRLFD optimization problem. In particular, we are inspired
by IRLF [13], where a simple but powerful framework based
on the max entropy IRL method is proposed.

A. Dissimilarity measurement with labels

This work introduces a sequence of labels to the dis-
similarity measurement to deal with the state-action pair
overlapping issue. In other words, instead of labeling the
whole demonstration as lτ , we label each state-action pair
in the time series as lt. The label indicates the possibility
of a visited state-action pair exhibiting either expert or
failed behavior. For example, lt = p

(
(st, at) ∈ (SD,AD)

)
.

The label for failed behavior is denoted as lF for short;
similarly, the label for expert behavior is denoted as lD.
Note that this is a two-class label; therefore, the summation
on the possibility of exhibiting expert or failed behavior
is consistent p

(
lt = lD

)
+ p

(
lt = lF

)
= 1. We then in-

troduce time-series labels to the demonstrations so that the
demonstration becomes a state-action-label sequence such as
τi =

〈(
s
(τi)
1 , a

(τi)
1 , l

(τi)
1

)
, . . . ,

(
s
(τi)
hi

, a
(τi)
hi

, l
(τi)
hi

)〉
.

The introduced labels also influence the reward function
such that the reward function for a state-action pair exhibiting
expert behavior is high. The reward function is low for
failed behavior. This intuition is represented as a reward
function with an additional label variable, R(st, at, lt). A
reward function with labels affects the state-value function

in (1), which gives a state-label-value function:

V π(s, l) = Eπ

[
h∑

t=1

R(st, at, lt)

∣∣∣∣∣s1 = s

]
. (17)

Finally, we denote a marginal estimation of the state-
label-value function over the states and labels sampled
from demonstrations as E(s,l)∼D [V πD (s, l)]. Thus, we can
measure the dissimilarity of the learned reward to the failed
reward as

E(s,l)∼P

[
V π(s, l)

]
− E(s,l)∼F

[
V πF (s, l)

]
. (18)

Such time-series labels deal with the state-action overlapping
issue when measuring dissimilarity because they explicitly
distinguish failed behavior from expert behavior at each
timestep.

B. Optimization problem with labels

We introduce the proposed dissimilarity measurement with
labels to the IRLFD optimization problem:

max
π,z,θ

H(Ah||Sh) + θz − λ

2
||θ||2

s.t. E(s,l)∼P

[
V π(s, l)

]
= E(s,l)∼D

[
V πD (s, l)

]
E(s,l)∼P

[
V π(s, l)

]
− E(s,l)∼F

[
V πF (s, l)

]
= z.

(19)
Here, we model the driving behaviors with a modified

MDP involving labels. Fig. 1 shows the underlying graphical
model for an MDP with labels.
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Fig. 1: Underlying graphical model for an MDP with labels.
The nodes and edges in black are previously used in proba-
bilistic inference. The nodes and edges in red are introduced
in the proposed method. Here, r1 = R(s1, a1, l1) indicates
the reward at the first timestep.

We introduce time-series labels to the probability function
of backward messages:

βt(st, at, lt) =

exp

(
h∑

t=t′

R(st, at, lt)p(st+1|st, at)

)
p(lt|st, at),

(20)



where

exp

(
h∑

t=t′

R(st, at, lt)p(st+1|st, at)

)
=∑

st+1∈S
βt+1(st+1)p(st+1|st, at) exp

(
R(st, at, lt)

)
.

(21)
Then, the state-marginal probability function gives

βt(st, lt) =
∑
at∈A

βt(st, at, lt)p(at|st)p(lt|st, at). (22)

We also represent the modified backward messages in log
space which corresponds to the state-action and state-value
functions:

Q(st, at, lt) = log βt(st, at, lt),

V (st, lt) = log βt(st, lt).
(23)

Finally, the policy is obtained by

π(st, at, lt) = exp
(
Q(st, at, lt)− V (st, lt)

)
. (24)

By plugging this modified probability function with labels
back into the optimization problem, the previous gradients
in (16) become

∇wDL(π,wD, wF ) =

E(s,l)∼P

[
V π(s, l)

]
− E(s,l)∼D

[
V πD (s, l)

]
,

∇wFL(π,wD, wF ) =

E(s,l)∼P

[
V π(s, l)

]
− E(s,l)∼F

[
V πF (s, l)

]
− λwF .

(25)
We now obtain two conflict-free gradients because the state-
action pairs are explicitly split with the proposed labels.
These conflict-free gradients represent the key solution to
the instability issue of the IRLFD training process.

Algorithm 1 SIRLFD

Input: expert demonstrations D, failed demonstrations F
1: initialize wD and wF randomly
2: repeat
3: obtain the reward function R(st, at, lt) by (27)
4: obtain esitimated state-label-value funtion from

expert demonstrations E(s,l)∼D [V πD (s, l)] by (17)
5: obtain esitimated state-label-value funtion from

failed demonstrations E(s,l)∼F [V πF (s, l)] by (17)
6: optimize the policy π by (20-24), Fig. 1
7: obtain esitimated state-label-value funtion from

learned distribution E(s,l)∼P [V π(s, l)] by (17)
8: update weight parameters wD, wF by (25-26)
9: until convergence

Output: R(st, at, lt)

Algorithm 1 summarizes the method proposed in proce-
dures. First, we initialize the weights randomly (line 1).

Notably, the initialization on wF is trivial if we set the
gradient of ∇wFL(π,wD, wF ) in (25) at zeros, thus yielding
the following:

wF =
1

λ

(
E(s,l)∼P

[
V π(s, l)

]
− E(s,l)∼F

[
V πF (s, l)

])
.

(26)
In other words, the optimal wD is updated incrementally
using gradient descent until convergence; meanwhile, the
optimal solution of wF is found analytically. Inside the main
loop, we first compute the reward function (line 3) and then
compute the expected future rewards by giving the dataset
of expert and failed demonstrations (lines 4-5). Notably, a
reward function can be represented in multiple ways and a
straightforward way is used in this work, as follows:

R(st, at, lt) = (wD + wF )ϕ(st, at)lt, (27)

where ϕ(st, at) is a predefined feature function depending
on the scenarios. With the reward function, the policy can
be obtained via probabilistic inference (line 6), such that the
learned expected future rewards can be calculated (line 7).
Finally, using the rewards from demonstrations and learned
rewards, two weight vectors are updated (line 8). The main
loop ends until convergence and the learned reward function
is obtained.

V. EXPERIMENTAL RESULTS

The proposed method is evaluated in two driving scenar-
ios. Experiments are conducted to qualitatively evaluate the
stability of gradients in the training process and quantita-
tively evaluate the performance regarding the similarities.

A. Driving scenarios

We use two driving scenarios in this experiment.

STOP

start point stop line goal point

Fig. 2: Stop line scenario on CARLA simulator.

1) Stop line scenario: The first scenario is a stopping-
at-stop line task where the scenario design is shown in
Fig. 2. There is a stop traffic sign in the middle of the road.
The ego vehicle should start from the start point with an
initial velocity of 0 km/h, stop at the stop line, and then
reach the goal point. The state space contains information
on the discrete velocity v and discrete location y of the ego
vehicle. Let the location of the stop line be ys. The expert
demonstrations show a stop behavior at the stop line, such
as ∃st ∈ τD, (yt, vt) = (ys, 0). On the other hand, the failed
demonstrations do not show any stop behavior at the stop
line, such as ∀st ∈ τF , (yt, vt) ̸= (ys, 0). In this scenario,
the feature function is designed as a weighted average of
three factors, indicating a stop behavior at the stop line, a



high-velocity range near the stop line, and a stop behavior
at the goal point, respectively.

ego vehicle obstacle#1 obstacle#2

Fig. 3: Scenario of avoiding obstacles on CARLA simulator.

2) Avoiding obstacle scenario: The second scenario
involves avoiding two obstacles with the lane-change task;
the scenario design is shown in Fig. 3. There are two
obstacles on a two-lane road and the ego vehicle should move
from left to right while avoiding obstacles and switching to
the correct lane. The state space contains the information
on the location’s x and y coordinates in a three-dimensional
map. Let the locations of the obstacles, (xo, yo), be in a
range of (xo, yo) ∈ (X o,Yo). The expert demonstrations
reveal the behaviors of avoiding all these obstacles, such
as ∀st ∈ τD, (xt, yt) /∈ (X o,Yo). On the other hand, the
failed demonstrations show the behaviors of colliding with
the obstacle, such as ∃st ∈ τF , (xt, yt) ∈ (X o,Yo). In this
scenario, the feature function deals with five factors: the
first two factors represent the boundaries outside the two-
lane road; one factor indicates the boundary between two
lanes; and the final two factors represent the locations of
two obstacles.

(a) Nonstop at the stop line. (b) Collide to the obstacle.

Fig. 4: Failed demonstrations on CARLA simulator in two
scenarios.

B. Data collection

The driving behavior data is collected using the CARLA
simulator [3]. Participants were first tasked with a training
phase to familiarize themselves with virtual driving in a
simulation environment using driving handle controllers,
including a steering wheel and pedals. The simulated driving
is conducted in a driver’s first-person view. For both driving
scenarios, 20 expert demonstrations and 20 failed demon-
strations are collected. Fig. 4 shows a failed demonstration
in both driving scenarios. In the stop line scenario, the failed
demonstrations pass the stop line with high velocity. In the
avoiding obstacle scenario, the failed demonstrations collide
with the obstacle (a stopped vehicle) on the road.

C. Comparison methods

In this work, we evaluate the proposed SIRLFD method
by comparing it against the following state-of-the-art IRL
methods:

1) max entropy IRL: The max entropy IRL [18] method
is a probabilistic approach considering uncertainty in the
reward function. This method also provides a well-defined
distribution over the demonstrations by matching the feature
expectations. We implement the constraint of feature expec-
tations by estimating the state-visiting frequencies. Notably,
hereafter, max entropy IRL is simply referred to as IRL.

2) IRLF: IRLF [13] introduces an additional constraint
to the problem of optimizing the max entropy IRL method. It
restricts the conditions of IRL such that IRLF can also learn
from the failed demonstrations by not imitating the failed
behaviors. This additional constraint is also implemented by
the state-visiting frequencies.

D. Evaluation metric

We use two types of likelihoods to evaluate the perfor-
mance on the similarity between the two types of demonstra-
tions and the recovered trajectories based on the learned re-
ward function. The positive likelihood measures the similar-
ity of the expert demonstrations to the recovered trajectories,
such as LD =

∑
τD∈D log p(τ |wD, wF )− log p(τD). On the

other hand, the negative likelihood measures the similarity of
the failed demonstrations to the recovered trajectories, such
as LF =

∑
τF∈F log p(τ |wD, wF ) − log p(τF ). Notably,

both positive and negative likelihood metrics are reported on
a log scale. Furthermore, we use the difference between the
positive and negative likelihoods as a performance metric,
such as L = LD − LF , which is used to evaluate how well
the model could imitate the expert demonstrations without
imitating the failed ones. In other words, it is used to measure
the ability to distinguish failed demonstrations from expert
demonstrations; hence, the higher the score on this metric,
the better is the performance.

E. Results

First, we qualitatively show the gradient improvement by
introducing the overlapping state-action pair issue. Fig. 5 and
Fig. 6 show the results of our experiments on the data of the
stop line scenario with the data ratio of |D| : |F| = 2 : 1 and
1 : 2, respectively. Fig. 5b and Fig. 6b specifically show the
negative likelihood. The blue curves representing the results
of the IRLF method fluctuate significantly during the training
process. The instability in the training process was caused
by the overlapping state-action pair issues in the expert
and failed demonstrations. Meanwhile, Fig. 5a and Fig. 6a
show the positive likelihood. In this case, the fluctuation
is less significant than that in the negative likelihood. The
fluctuation can be attributed to the overlapped state-action
pairs directly influencing the negative gradients, while the
positive gradient is influenced indirectly through the learned
reward. In addition, both positive likelihood and negative
likelihood fluctuate more when the ratio of |D| : |F| becomes
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Fig. 5: Likelihood over 100 iterations, for 10 runs with the
data ratio of |D| : |F| = 2 : 1 in the stop line scenario.
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Fig. 6: Likelihood over 100 iterations, for 10 runs with the
data ratio of |D| : |F| = 1 : 2 in the stop line scenario.

smaller. In other words, the more overlapped the state-
action pairs in the data, the worse the performance. The
red curves indicate the results obtained by our proposed
method, which introduces a time-series labeling mechanism
to split the overlapped state-action pairs. This is a compelling
solution in that the likelihood could monotonically increase
and eventually converge to a higher score.

We then qualitatively show the learned rewards to analyze
the characteristics of different methods. Fig. 7 plots the
original and learned reward functions for SIRLFD, IRL,
and IRLF in the avoiding obstacle scenario. In the original
reward function, as shown in Fig. 7a, the reward was low at
the locations of two obstacles and the boundaries of two
lanes. Fig. 7b shows the learned reward function by our
proposed SIRLFD method, which could adequately recover
the original reward function by recognizing the obstacles.
By contrast, the learned reward function by the IRL method,
as shown in Fig. 7c, could only achieve a low reward
around the boundaries of lanes but could not distinguish
the obstacles on the road. This result proves the importance
of an additional constraint that does not aim to imitate
failed demonstrations. However, despite the IRLF method
including such a constraint in the optimization problem, it
still could not distinguish the obstacles as shown in Fig. 7d.
This instability could be attributed to the constraint being
ill-posed and influenced by the state-action pair overlapping
issue significantly such that even with the constraint, the
learned reward by IRLF is worse than the learned reward
by IRL. Therefore, the state-action pair overlapping issue
needs to be solved with a well-posed constraint.

We quantitatively evaluated the performance across dif-
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Fig. 7: Original reward and learned reward functions for the
three methods in the avoiding obstacle scenario. Rewards are
represented in heat maps. Specifically, two blue circles in the
heat map indicate low rewards around two obstacles.

ferent ratios of |D| : |F| in both the stop line scenario
and avoiding obstacle scenario shown in Table I and Ta-
ble II, respectively. The mean and standard deviation of
the performance were evaluated after 100 iterations for 10
runs. We represent the performance of the methods under
different data ratios of |D| : |F| while keeping the total
size of the full demonstration set |D ∪ F| fixed. The tables
show that the proposed SIRLFD method performed better
than IRL and IRLF. Note that IRLF performed poorly
compared to IRL in both scenarios because, in both designed
driving scenarios, the negative state space set SF was a
tiny portion of the whole state space S . In other words,
the overlapped state-action pairs in both scenarios were
significantly large. This result shows that although IRLF has
a specific constraint to not imitate failed demonstrations, the
performance could have further degraded owing to such an
ill-posed problem. Therefore, our proposed method makes it
a well-posed problem with the proposed time-series labeling,
thereby improving performance significantly.

2:1 1:1 1:2
IRL −44.90± 7.50 −43.65± 6.18 −44.29± 5.63

IRLF −70.82± 7.31 −56.87± 9.65 −62.91± 2.69
SIRLFD −43.05± 4.64 −37.43± 6.09 −39.96± 5.48

TABLE I: Quantitative evaluation of performance, L, across
different ratios of |D| : |F| in the stop line scenario.

2:1 1:1 1:2
IRL −247.88± 7.59 −221.80± 6.19 −244.98± 8.06

IRLF −474.20± 55.37 −442.32± 34.78 −600.84± 64.42
SIRLFD −214.75± 10.37 −216.67± 13.38 −200.13± 9.41

TABLE II: Quantitative evaluation of performance, L, across
different ratios of |D| : |F| in the avoiding obstacle scenario.

We also quantitatively evaluated performance across dif-



20(1) 20(4) 20(8)
IRL −41.34± 4.50 −45.91± 4.70 −45.78± 8.89

IRLF −47.54± 11.71 −55.38± 9.38 −83.03± 15.18
SIRLFD −36.99± 6.12 −42.54± 7.06 −40.75± 6.81

TABLE III: Quantitative evaluation of performance, L,
across different number of |F| mixed into expert demonstra-
tions in the stop line scenario. The column name indicates
the number of expert demonstrations mixed with failed
demonstrations |D|(|F|).

20(1) 20(4) 20(8)
IRL −235.27± 17.03 −252.55± 9.40 −228.14± 8.54

IRLF −451.98± 58.11 −383.65± 21.93 −510.37± 61.84
SIRLFD −207.14± 12.26 −209.52± 11.33 −207.24± 11.23

TABLE IV: Quantitative evaluation of performance, L,
across different number of |F| mixed into expert demon-
strations in the avoiding obstacle scenario.

ferent numbers of failed demonstrations mixed into the
expert demonstrations. This experiment aimed to evaluate the
extent to which dataset quality would influence performance
because collecting high-quality driving data is highly costly
in the real world. By contrast, normal-quality driving data are
readily available, such as the daily driving records of normal
drivers. We simulated data quality as an expert dataset mixed
with some failed demonstrations. In this case, the more
mixed failed demonstrations in the expert demonstrations, the
worse the quality of the dataset. Table III and Table IV show
the results of the stop line scenario and avoiding obstacle
scenario, respectively. Our method generally showed the best
performance for various data qualities. This result indicates
that our method is robust to data quality.

VI. CONCLUSION

IRL has recently become one of the most prominent
approaches for modeling driving behaviors from driving
demonstrations. As expert demonstrations cannot help pre-
dict driving behaviors to avoid dangers on purpose, failed
demonstrations are also introduced to the traditional IRL
framework. However, owing to the over-constrained opti-
mization problem, when a large overlapping exists on state-
action pairs, the performance reduces significantly. To over-
come this limitation, this work proposed a stable IRLFD
method that formalizes a novel constraint with time-series
labels. Despite its simplicity, the proposed method is more
effective and stable. Experimental results on simulated stop
line and avoiding obstacle scenarios showed that the pro-
posed method performed better in terms of stability and
ability to distinguish expert from failed behaviors. In the
future, we plan to develop an automatic label generation
algorithm to reduce the labeling cost.
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